共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
Imran Maqsood 《Journal of the Air & Waste Management Association (1995)》2013,63(5):540-549
Abstract This study introduces a two-stage interval-stochastic programming (TISP) model for the planning of solid-waste management systems under uncertainty. The model is derived by incorporating the concept of two-stage stochastic programming within an interval-parameter optimization framework. The approach has the advantage that policy determined by the authorities, and uncertain information expressed as intervals and probability distributions, can be effectively communicated into the optimization processes and resulting solutions. In the modeling formulation, penalties are imposed when policies expressed as allowable waste-loading levels are violated. In its solution algorithm, the TISP model is converted into two deterministic submodels, which correspond to the lower and upper bounds for the desired objective-function value. Interval solutions, which are stable in the given decision space with associated levels of system-failure risk, can then be obtained by solving the two submodels sequentially. Two special characteristics of the proposed approach make it unique compared with other optimization techniques that deal with uncertainties. First, the TISP model provides a linkage to prede?ned policies determined by authorities that have to be respected when a modeling effort is undertaken; second, it furnishes the reflection of uncertainties presented as both probabilities and intervals. The developed model is applied to a hypothetical case study of regional solid-waste management. The results indicate that reasonable solutions have been generated. They provide desired waste-flow patterns with minimized system costs and maximized system feasibility. The solutions present as stable interval solutions with different risk levels in violating the waste-loading criterion and can be used for generating decision alternatives. 相似文献
4.
5.
6.
Jacob K. Javits 《Journal of the Air & Waste Management Association (1995)》2013,63(5):489-501
To increase U.S. petroleum energy-independence, the University of Texas at Arlington (UT Arlington) has developed a coal liquefaction process that uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This paper reports on part of the environmental evaluation of the liquefaction process: the evaluation of the solid residual from liquefying the coal, called inertinite, as a potential adsorbent for air and water purification. Inertinite samples derived from Arkansas and Texas lignite coals were used as test samples. In the activated carbon creation process, inertinite samples were heated in a tube furnace (Lindberg, Type 55035, Arlington, UT) at temperatures ranging between 300 and 850 °C for time spans of 60, 90, and 120 min, using steam and carbon dioxide as oxidizing gases. Activated inertinite samples were then characterized by ultra-high-purity nitrogen adsorption isotherms at 77 K using a high-speed surface area and pore size analyzer (Quantachrome, Nova 2200e, Kingsville, TX). Surface area and total pore volume were determined using the Brunauer, Emmet, and Teller method, for the inertinite samples, as well as for four commercially available activated carbons (gas-phase adsorbents Calgon Fluepac-B and BPL 4?×?6; liquid-phase adsorbents Filtrasorb 200 and Carbsorb 30). In addition, adsorption isotherms were developed for inertinite and the two commercially available gas-phase carbons, using methyl ethyl ketone (MEK) as an example compound. Adsorption capacity was measured gravimetrically with a symmetric vapor sorption analyzer (VTI, Inc., Model SGA-100, Kingsville, TX). Also, liquid-phase adsorption experiments were conducted using methyl orange as an example organic compound. The study showed that using inertinite from coal can be beneficially reused as an adsorbent for air or water pollution control, although its surface area and adsorption capacity are not as high as those for commercially available activated carbons.
Implications: The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. UT Arlington has developed a liquefaction process that converts coal, abundant in the United States, to crude oil. This work demonstrated that the undissolvable solid coal residual from the liquefaction process, called inertinite, can be converted to an activated carbon adsorbent. Although its surface area and adsorption capacity are not as high as those for commercially available carbons, the inertinite source material would be available at no cost, and its beneficial reuse would avoid the need for disposal. 相似文献
7.
Lewis H. Rogers 《Journal of the Air & Waste Management Association (1995)》2013,63(8):752-753
Fiscal nineteen seventy three-four was another busy year for the Association. It was a year of expanded services, publications, and meetings. New initiatives on the part of the Board of Directors, the Technical Council and its committees, local APCA Sections and the Headquarters staff were undertaken. All of the statistical reports are positive, and show increased membership, pages published, advertising, meetings, and involvement of members. But of more importance, APCA is filling its role in a positive and meaningful way, and is continuing to attract persons working in the air pollution control profession to its many programs. As most of you know by now, dues for individual members have been increased from $25 to $35 annually because of the continued inflation in postage, paper, and cost of doing business. 相似文献
8.
9.
《Journal of the Air & Waste Management Association (1995)》2013,63(10):1089-1097
10.
11.
B. J. Finlayson-Pitts L. L. Sweetman W. J. Mautz 《Journal of the Air & Waste Management Association (1995)》2013,63(4):479-511
The biowaste fractions in municipal solid waste (MSW) are the main odor sources in landfill and cause widespread complaints from residents. The ammonia (NH3) and hydrogen sulfide (H2S) generation processes were simulated and compared between four typical biowaste fractions individually and combined in the mixed MSW. Food waste was found to be the main contributor to odor emission in mixed MSW, with H2S generation potential of 48.4 μg kg?1 and NH3 generation potential of 4742 μg kg?1. Fruit waste was another source for NH3 generation, with 3933 μg kg?1 NH3 generation potential. Meanwhile, nitrogen (N) was released in a faster way than sulfur (S) in waste, since 31% and 46% of total NH3 and H2S were generated in the first 90 days after disposal, with 1811 and 72 μg kg?1, and more emphasis should be placed in this initial period.Implications:?Monitoring of odor generation from biowastes in MSW on a laboratory scale showed that food waste is the main source for NH3 and H2S generation, whereas waste fruit is another main contributor for NH3 released. Generally, N was released in a faster way than S from mixed-waste landfilling. 相似文献
12.
David E. Abbey Gary L. Euler John K. Moore Floyd Petersen John E. Hodgkin Allan R. Magie 《Journal of the Air & Waste Management Association (1995)》2013,63(4):437-469
A method for setting air quality standards for long-term cumulative exposures of a population based on epidemiological studies has been developed. It uses exposure estimates interpolated from monitoring stations to zip code centroids, each month applied to zip code by month residence histories of the population. Two alternative cumulative exposure indices are used—hours in excess of a threshold, and the sum of concentrations above a threshold. The indices are then used with multiple logistic regression models for the health outcome data to form dose response curves for relative risk, adjusting for covariates. These curves are useful for determination of at what exposure amounts and threshold levels, effects which have both statistical and public health significance begin to occur. The method is applied to a ten year follow-up of a sub cohort of 7,343 members of the National Cancer Institute-funded Adventist Health Study. Up to 20 years of residence history was available. Analysis for prevalence of symptoms was conducted for four air pollutants— total oxidants, sulfur dioxide, nitrogen dioxide, and total suspended particulates. For each pollutant, cumulated exposures were calculated above each of five different thresholds. Statistically significant effects were noted for total suspended particulates, total oxidants, sulfur dioxide, past and passive smoking. 相似文献
13.
KwangYul Lee Young J. Kim Chang-Hee Kang Jeong-Soo Kim Lim-Seok Chang 《Journal of the Air & Waste Management Association (1995)》2013,63(4):445-477
Carbonaceous species (organic carbon [OC] and elemental carbon [EC]) and inorganic ions of particulate matter less than 2.5 μm (PM2.5) were measured to investigate the chemical characteristics of long-range-transported (LTP) PM2.5 at Gosan, Jeju Island, in Korea in the spring and fall of 2008–2012 (excluding 2010). On average, the non-sea-salt (nss) sulfate (4.2 µg/m3) was the most dominant species in the spring, followed by OC (2.6 µg/m3), nitrate (2.1 µg/m3), ammonium (1.7 µg/m3), and EC (0.6 µg/m3). In the fall, the nss-sulfate (4.7 µg/m3) was also the most dominant species, followed by OC (4.0 µg/m3), ammonium (1.7 µg/m3), nitrate (1.1 µg/m3), and EC (0.7 µg/m3). Both sulfate and OC were higher in the fall than in the spring, possibly due to more common northwest air masses (i.e., coming from China and Korea polluted areas) and more frequent biomass burnings in the fall. There was no clear difference in the EC between the spring and fall. The correlation between OC and EC was not strong; thus, the OC measured at Gosan was likely transported across a long distance and was not necessarily produced in a manner similar to the EC. Distinct types of LTP events (i.e., sulfate-dominant LTP versus OC-dominant LTP) were observed. In the sulfate-dominant LTP events, air masses directly arrived at Gosan without passing over the Korean Peninsula from the industrial area of China within 48 hr. During these events, the aerosol optical depth (AOD) increased to 1.63. Ionic balance data suggest that the long-range transported aerosols are acidic. In the OC-dominant LTP event, a higher residence time of air masses in Korea was observed (the air masses departing from the mainland of China arrived at the sampling site after passing Korea within 60–80 hr).Implications:?In Northeast Asia, various natural and anthropogenic sources contribute to the complex chemical components and affect local/regional air quality and climate change. Chemical characteristics of long-range-transported (LTP) PM2.5 were investigated during spring and fall of 2008, 2009, 2011, and 2012. Based on air mass types, sulfate-dominant LTP and OC-dominant LTP were observed. A long-term variation and chemical characteristics of PM2.5 along with air mass and satellite data are required to better understand long-range-transported aerosols. 相似文献
14.
15.
16.
17.
18.
19.
20.
Kirk P. Lowery Robert B. Jacko 《Journal of the Air & Waste Management Association (1995)》2013,63(9):847-848
Abstract A wind tunnel study was completed to determine the effects the presence of a parapet and raised intake configurations have on the dilution of a pollutant between a rooftop stack and building intake. This study was the first to address the effects of building parapets and varying intake configurations. A study of this kind is desirable because it is common practice for architects to attempt to hide stacks with the use of a parapet in order to make industrial buildings more aesthetically pleasing. This is done with no thought to the effect it may have on the intended function of the stacks, which is dispersing gases away from the building to avoid contamination of ventilation air. Three parapet configurations (no parapet and two different parapet heights) and two intake configurations (flush and raised) were investigated. The relative effects of the parapets and the raised intake configurations were also compared and contrasted for five stack heights, two stack locations, and four intake locations. The parapets were found to produce a cavity zone that extends above the building's roof by as much as two times the physical height of the parapet; increasing stack height had little effect on dispersion until the stack extended beyond this cavity region. The independent use of the parapets and raised intake configuration decreased the number of dilutions occurring between stack and intake when compared to the no parapet and flush intake configurations in all cases. Also substantiated in this study is the widely accepted view that the effect of the parapet addition is to decrease the effective stack height by the parapet height itself. The results of this investigation were then compared to existing wind tunnel-derived empirical models. The models tested were not able to predict the effects of varying stack height and of varying the relative distance between stack and intake on the dilution of a pollutant between stack and intake under the tested configurations. 相似文献