首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A year-long study was conducted in Pinal County, AZ, to characterize coarse (2.5 – 10 μm aerodynamic diameter, AD) and fine (< 2.5 μm AD) particulate matter (PMc and PMf, respectively) to further understand spatial and temporal variations in ambient PM concentrations and composition in rural, arid environments. Measurements of PMc and PMf mass, ions, elements, and carbon concentrations at one-in-six day resolution were obtained at three sites within the region. Results from the summer of 2009 and specifically the local monsoon period are presented.

The summer monsoon season (July – September) and associated rain and/or high wind events, has historically had the largest number of PM10 NAAQS exceedances within a year. Rain events served to clean the atmosphere, decreasing PMc concentrations resulting in a more uniform spatial gradient among the sites. The monsoon period also is characterized by high wind events, increasing PMc mass concentrations, possibly due to increased local wind-driven soil erosion or transport. Two PM10 NAAQS exceedances at the urban monitoring site were explained by high wind events and can likely be excluded from PM10 compliance calculations as exceptional events. At the more rural Cowtown site, PM10 NAAQS exceedances were more frequent, likely due to the impact from local dust sources.

PM mass concentrations at the Cowtown site were typically higher than at the Pinal County Housing and Casa Grande sites. Crustal material was equal to 52-63% of the PMc mass concentration on average. High concentrations of phosphate and organic carbon found at the rural Cowtown were associated with local cattle feeding operations. A relatively high correlation between PMc and PMf (R2?=?0.63) indicated that the lower tail of the coarse particle fraction often impacts the fine particle fraction, increasing the PMf concentrations. Therefore, reductions in PMc sources will likely also reduce PMf concentrations, which also are near the value of the 24-hr PM2.5 NAAQS.

Implications: In the desert southwest, summer monsoons are often associated with above average PM10 (<10 μm AD) mass concentrations. Competing influences of monsoon rain and wind events showed that rain suppresses ambient concentrations while high wind increase them. In this region, the PMc fraction dominates PM10 and crustal sources contribute 52-63% to local PMc mass concentrations on average. Cattle feedlot emissions are also an important source and a unique chemical signature was identified for this source. Observations suggest monsoon wind events alone cannot explain PM10 NAAQS exceedances, thus requiring these values to remain in compliance calculations rather than being removed as exceptional wind events.  相似文献   

2.
Aerosol size distributions were measured in the air exhausted from a horizontal spike Soderberg aluminum reduction cell at the Kaiser Aluminum and Chemical Corporation plant in Tacoma, Wash. The particle size distributions were measured with the University of Washington cascade impactor, developed specifically for source testing. The particle mass concentrations and size distributions were found to vary significantly with changes in the cell process operations. For a typical aerosol size distribution at the exit of the cell hood the mass mean particle diameter was 5.5 microns and the particle size standard geometric deviation was 25.  相似文献   

3.
The objective of the study was to determine the degree of microbiological contamination, type of microflora, bioaerosol particle size distribution, and concentration of endotoxins in dust in different types of composting plants. In addition, this study provides a list of indicator microorganisms that pose a biological threat in composting facilities, based on their prevalence within the workplace, source of isolation, and health hazards. We undertook microbiological analysis of the air, work surfaces, and compost, and assessed the particle size distribution of bioaerosols using a six-stage Andersen sampler. Endotoxins were determined using gas chromatography–mass spectrometry (GC-MS). Microbial identification was undertaken both microscopically and using biochemical tests. The predominant bacterial and fungal species were identified using 16S rRNA and ITS1/2 analysis, respectively.?The number of mesophilic microorganisms in composting plants amounted to 6.9 × 102–2.5 × 104 CFU/m3 in the air, 2.9 × 102–3.3 × 103 CFU/100 cm2 on surfaces, and 2.2 × 105–2.4 × 107 CFU/g in compost. Qualitative analysis revealed 75 microbial strains in composting plants, with filamentous fungi being the largest group of microorganisms, accounting for as many as 38 isolates. The total amount of endotoxins was 0.0062–0.0140 nmol/mg of dust. The dust fraction with aerodynamic particle diameter of 0.65–1.1 μm accounted for 28–39% of bacterial aerosols and 4–13% of fungal aerosols. We propose the following strains as indicators of harmful biological agent contamination: Bacillus cereus, Aspergillus fumigatus, Cladosporium cladosporioides, C. herbarum, Mucor hiemalis, and Rhizopus oryzae for both types of composting plants, and Bacillus pumilus, Mucor fragilis, Penicillium svalbardense, and P. crustosum for green waste composting plants. The biological hazards posed within these plants are due to the presence of potentially pathogenic microorganisms and the inhalation of respirable bioaerosol. Depending on the type of microorganism, these hazards may be aggravated or reduced after cleaning procedures.

Implications:?This study assessed the microbial contamination in two categories of composting plants: (1) facilities producing substrates for industrial cultivation of button mushrooms, and (2) facilities for processing biodegradable waste. Both workplaces showed potentially pathogenic microorganisms, respirable bioaerosol, and endotoxin. These results are useful to determine the procedures to control harmful biological agents, and to disinfect workplaces in composting plants.  相似文献   

4.
A plug-flow model is developed showing the way in which efficiency depends on unfluidized bed height, bed particle size, participate mobility, gas flow rate and applied electric field intensity. This model is successfully correlated with tests in which flow rate, bed particle size, and unfluidized bed height are varied. It is shown that efficiencies better than 90% can be achieved in collecting 0.4 µm DOP with a gas residence time less than 50 msec and a pressure drop of about 10 cm of water.  相似文献   

5.
Current atmospheric observations tend to support the view that continental tropospheric aerosols (particularly urban aerosols) show multimodal mass distributions in the size range of 0.01–100 μm. The origin of these aerosols is both natural and anthropogenic. Recently, trimodal sub-μm size distributions from combustion measurements at 0.008, 0.035 and 0.15 μm were also observed. Our interest in the present study is the secondary process of growth of sub-μm size aerosols by the coagulation process alone. Using the ‘J-space’ (integer-space) distribution method of Salk (Suck) and Brock (1979, J. Aerosol Sci.10, 58–590), we report an accurate numerical simulation study of the evolution of ultrafine to fine particle size distributions. Comparision with the analytic solution of Scott (1968, J. atmos. Sci.25, 54–64) was made to test the accuracy of our J-space or integer-space distribution method. Our multimodal sub-μ particle size distribution study encompassed the particle size range of 0.001–0.20 μm. Details of particle growth in each mode and interaction between different modes in the multimodal distribution were qualitatively analyzed.  相似文献   

6.
Information on the particle size distribution of bioaerosols emitted from open air composting operations is valuable in evaluating potential health impacts and is a requirement for improved dispersion simulation modelling. The membrane filter method was used to study the particle size distribution of Aspergillus fumigatus spores in air 50 m downwind of a green waste compost screening operation at a commercial facility. The highest concentrations (approximately 8 × 104 CFU m−3) of culturable spores were found on filters with pore diameters in the range 1–2 μm which suggests that the majority of spores are emitted as single cells. The findings were compared to published data collected using an Andersen sampler. Results were significantly correlated (p < 0.01) indicating that the two methods are directly comparable across all particles sizes for Aspergillus spores.  相似文献   

7.
Xu YC  Shen QR  Ran W 《Chemosphere》2003,50(6):739-745
Most of the N in surface soils occurs in organic forms, and when mineralized it plays a key role in soil fertility and plant nutrition. Our objective was to study the effect of long-term applications of organic manure on the content and distribution of forms of organic N in bulk soil and soil particle size fractions to characterize the inherent soil nitrogen fertility. Five treatments were as follows: (1) CK (no fertilizer and no manure added), (2) mineral fertilizer only, (3) straw + NPK, (4) green manure + NPK and (5) pig manure + NPK. Soil particle size fractions (0-2, 2-10, 10-50 and 50-100 microm) were isolated without chemical pretreatment by ultrasonic dispersion in water followed by sedimentation. The content of total N and forms of organic N in the bulk soil increased after long-term fertilization, and the effect varied with fertilizer type. The plot treated with only mineral fertilizer gave the highest NH3-N and the lowest amino sugar-N content in all treatments. The highest content of amino sugar-N and amino acid-N was found in the treatment of pig manure + NPK. The content (g kg(-1) fraction) of hydrolysable N within size fractions was in the order 0-2 > 2-10 > 50-100 > 10-50 microm, but the contribution of different size fraction to hydrolysable N decreased in the sequence 10-50 > 0-2 > 2-10 > 50-100 microm. Most of the applied mineral fertilizer N that remained in soils was distributed in the particle size fraction < 2 microm while most of the remaining N from manure applied with NPK was transferred into amino sugar-N in each size fraction, and amino acid-N in the size fractions > 2 microm during the process of humification.  相似文献   

8.
Concurrent measurements of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) in different size fractions of atmospheric particulate matter are presented for a winter and a summer sampling period. The PCDD/Fs and PAHs were primarily associated with particles of <1.35 μm aerodynamic diameter. The particle size distributions were similar for the compounds within each substance group and, surprisingly, also between the PCDD/Fs and PAHs. Changes in the particle size distribution of particle mass were reflected in the particle size distributions of the PCDD/Fs and PAHs.The data were employed to identify those particle size fractions dominating the wet and dry particle bound deposition of PCDD/Fs and PAHs and, furthermore, to assess the relative contributions of wet and dry deposition to the total particle bound deposition fluxes. The calculations indicate that coarse particles contribute most to the dry deposition while, in contrast, the wet deposition of the PCDD/Fs and PAHs is dominated by fine particles. Furthermore, it is estimated that in Bayreuth wet deposition dominates the total particle bound deposition of PCDD/Fs and PAHs.  相似文献   

9.
The size distribution of particles has been studied in three sites in the Metropolitan area of Santiago de Chile in the winter of 2009 and a comparison with black carbon was performed. Two sites are located near busy streets in Santiago and the other site is located in a rural area about 40 km west of Santiago with little influence from vehicles, but large influence from wood burning. The campaign lasted 1 or 2 weeks in each site. We have divided the particle size measurements into four groups (10–39 nm, 40–62 nm, 63–174 nm, and 175–700 nm) in order to compare with the carbon monitor. In the sites near the street, black carbon has a high correlation (R ? 0.85) with larger particles (175–700 nm). The correlation decreased when black carbon was compared with smaller particles, having very small correlation with the smallest sizes (10–39 nm). In the rural site, black carbon also has a high correlation (R = 0.86) with larger particles (175–700 nm), but the correlation between black carbon and the finest particles (10–39 nm) decreases to near 0. These measurements are an indication that wood burning does not generate particles smaller than ?50 nm. In the urban sites, particle size distribution is peaked toward smaller particles (10–39 nm) only during rush hours, but at other times, particles size distribution is peaked toward larger sizes. When solar radiation was high, evidence of secondary particle formation was seen in the rural site, but not in the urban sites. The correlation between the number of secondary particles and solar radiation was R2 = 0.46, indicating that it there may be other variables that play a role in ultrafine particle formation.
Implications:A study of the size distribution of particles and black carbon concentration in two street sites and one rural site shows that in the last site the number of particles ultrafine particles (d < 40 nm) is 10 times lower but the number of larger particles is about 2 times lower. Thus, the rural site has less of the particles that are more dangerous to health. The number of ultrafine particles is mostly associated with traffic, while the number of larger particles is associated with wood burning and other sources. Wood burning does not generate particles smaller than ?50 nm.  相似文献   

10.
工艺条件对磷回收过程中鸟粪石沉淀颗粒粒径的影响   总被引:1,自引:1,他引:0  
在鸟粪石沉淀法回收废水中磷的过程中,鸟粪石颗粒的大小将直接影响其沉淀的速率,进而影响鸟粪石的沉淀效果和磷的回收率。本文采用激光粒度分析仪测定鸟粪石的平均粒径,详细考察在小型连续搅拌反应-沉淀磷回收装置中不同的工艺条件下鸟粪石颗粒粒径的变化规律,并结合Stokes公式计算鸟粪石颗粒在废水出口处的沉降速率,为沉淀池的设计提供参考依据。结果表明:鸟粪石的平均粒径在12~25μm之间,沉降速率在5.46×10-5~2.37×10-4m/s之间。随着反应室水力停留时间的延长,鸟粪石颗粒的粒径逐渐增大,当停留时间超过18 min时,颗粒的粒径基本不变;随着沉淀室水力停留时间的延长,鸟粪石颗粒的平均粒径缓慢增大,当停留时间超过70 min后颗粒粒径的变化不大;鸟粪石颗粒的平均粒径在一定程度上受废水中磷初始浓度变化的影响,在磷初始浓度为62~128 mg/L时颗粒的粒径变化不大,当磷浓度为496 mg/L时粒径有较大增加,此时鸟粪石颗粒的沉降速率也大幅度增加;鸟粪石颗粒的平均粒径受pH值的影响不大;随氮磷摩尔比的增大,鸟粪石颗粒的平均粒径略有增加;随镁磷摩尔比的增大,鸟粪石颗粒的平均粒径逐渐减小,沉降速率则有明显的下降。  相似文献   

11.
Gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) concentrations evaluated in the exhaust of 10 two-stroke, 50-cm3 mopeds belonging to three different levels of emission legislation (EURO-0, EURO-1 and EURO-2) were used to assess the prevalent mechanism driving the gas/particle partitioning of PAHs in moped exhaust. Sampling was performed on a dynamometer bench both during the “cold-start” and the “hot” phases of the ECE-47 driving cycle. Gas and particulate phase PAHs were collected on polyurethane foam (PUF) plugs and 47-mm Pallflex T60A20 filters, respectively, under isokinetic conditions by using sampling probes inserted into the dilution tunnel of a Constant Volume Sampling – Critical Flow Venturi (CVS–CFV) system.The results show that semi-volatile PAHs were predominantly partitioned to the particle phase. The soluble organic fraction (SOF) of the collected particulates ranged between 72 and 98%. Measured total suspended particulate matter normalized partition coefficients (Kp) were predicted within a factor of 3–5 by assuming absorption into the organic fraction according to a model developed by Harner and Bidleman [Harner, T., Bidleman, T.F., 1998. Octanol–air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environmental Science & Technology 32, 1494–1502.]. This suggests that the gas/particle partitioning in moped exhaust is mainly driven by the high fraction of organic matter of the emitted particles and that absorption could be the main partitioning mechanism of PAHs.  相似文献   

12.
An analysis has been performed of data on particle samplers obtained during 1984 at Rubidoux, California, and Phoenix, Arizona, by the U.S. EPA, with emphasis on prediction of mass collected by the Andersen model 321A and Wedding inlet (previously GMW40CFM) PM10 samplers. The recent interpretation of these data by Rodes et al. 1 appears to fail to correct adequately for particle bounce, and to severely overestimate the FINE particle mass. The present study uses two completely different algorithms to make these corrections. The results obtained from these two approaches agree within a few percent, and lead to a prediction of the mass collected by the Wedding inlet within 7 percent. The Andersen 321A sampler, on the other hand, overcollects by as much as 34 percent. This analysis, if substantiated, would raise serious questions concerning the adequacy of the presently proposed Federal Reference Method for qualification of PM10 samplers.  相似文献   

13.
The distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) was examined according to particle size in marine sediments, with a particular focus on fine particulates. Samples from different coastal sites were fractionated into five size groups (<2, 2-5, 5-10, 10-20, and 20-63 microm diameter) by gravitational split-flow thin fractionation. Despite the different size profiles and PCDD/F contents of the sediments at each site, PCDD/F levels in fractionations tended to increase as the particle size decreased; the PCDD/F levels in the finest particles were up to 16 times higher than in the coarsest particles, which was associated with their organic carbon contents. Log normalization showed high levels of PCDD/Fs in the fine silt particles (2-10 microm), which are consumable by aquatic biota. Because of the different toxicity and bioavailability of PCDD/Fs in different sediment particle sizes, it is important to study particle actions to understand their effects on the aquatic ecosystem.  相似文献   

14.
Measurements of the physical properties of particles in the atmosphere of a UK urban area have been made, including particle number count by condensation nucleus counters with different lower particle size cut-offs; particle size distributions using a Scanning Mobility Particle Sizer; total particle Fuchs surface area using an epiphaniometer and particle mass using Tapered Element Oscillating Micro-balance (TEOM) instruments with size selective (PM10 and PM2.5) inlets. Mean particle number counts at three sites range from 2.86×104 to 9.60×104 cm-3. A traffic-influenced location showed a substantially higher ratio of particle number to PM10 mass than a nearby background location despite being some 70 m from the roadway. Operating two condensation nucleus counters in tandem to determine particles in the 3–7 nm size range by difference showed signficant numbers of particles in this range, apparently related to homogeneous nucleation processes. Measurements with the Scanning Mobility Particle Sizer showed a clear difference between roadside size distributions and those at a nearby background location with an additional mode in the roadside samples below 10 nm diameter. Particle number counts were found to show a significant linear correlation with PM10 mass (r2=0.44; n=44 for 24 h data at an urban background location), although during one period of high pollution a curvilinear relationship was found. Measurements of the diurnal variation in PM10 mass, particle number count and Fuchs surface area show the same general pattern of behaviour of the three variables, explicable in terms of vehicle emission source strength and atmospheric dispersion, although the surface area growth was out of phase with the particle number and mass. It appears that particle number gives the clearest indication of recent road traffic emissions.  相似文献   

15.
Exhaust gas particle and ion size distributions were measured from an off-road diesel engine complying with the European Stage IIIB emission standard. The measurements were performed at idling and low load conditions on an engine dynamometer. Nucleation-mode particles dominated the diesel exhaust particle number emissions at idle load. The nonvolatile nucleation-mode geometric mean diameter was detected at 10 nm or below. The nonvolatile nucleation-mode charge state implied that it has evolved through a highly ionizing environment before emission from the engine. The determined charging probabilities were 10.0 ± 2.2% for negative and 8.0 ± 2.0% for positive polarity particles. The nonvolatile nucleation particle concentration and size was also shown to be dependent on the lubricant oil composition. The particle emissions were efficiently controlled with a partial filter or with partial filter + selective catalytic reduction (SCR) combination. The particle number removal efficiencies of the aftertreatment systems were over 95% for wet total particle number (>3nm) and over 85% for dry particle total number. Nevertheless, the aftertreatment systems’ efficiencies were around 50% for the soot-mode particles. The low-load nonvolatile nucleation particle emissions were also dependent on the engine load, speed, and fuel injection pressure. The low load particle number emissions followed the soot-core trade-off, similar to medium or high operating loads.
Implications:Idling and low-load diesel engine exhaust emissions affect harmfully the ambient air quality. The low-load particle number emissions are here shown to peak in the 10-nm size range for a modern off-road engine. The particles are electrically charged and nonvolatile and they originate from the combustion process. Tailpipe particle control by open channel filter can remove more than 85% of the nonvolatile 10-nm particles and about 50% of the soot-mode particles, while the fuel injection pressure increase can lead to particle number increase. The study provides a new viewpoint for low-load particle emissions and control.  相似文献   

16.
Airborne particle number concentrations and size distributions as well as CO and NOx concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)×103 cm−3 and on weekends (5.9±0.2)×103 cm−3—a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2×104 and 9.6×104 vehicles per weekday and weekend day, respectively—a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 105 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NOx concentrations and a higher increase of about 70% in particle number concentration.  相似文献   

17.
Particle formation from showering may be attributed to dissolved mineral aerosols remaining after evaporation of micron-sized satellite droplets produced by the showerhead or from splashing of larger shower water droplets on surfaces. Duplicate continuous particle monitors measured particle size distributions in a ventilated residential bathroom under various showering conditions, using a full-size mannequin in the shower to simulate splashing effects during showering. Particle mass concentrations were estimated from measured shower particle number densities and used to develop emission factors for inhalable particles. Emission source strengths of 2.7-41.3 microg/ m3/min were estimated under the various test conditions using residential tap water in Columbus, OH. Calculated fine particulate matter (PM2.5) concentrations in the bathroom reached several hundred micrograms per cubic meter; calculated coarse particulate matter (PM10) levels approached 1000 microg/m3. Rates of particle formation tended to be highest for coarse shower spray settings with direct impact on the mannequin. No consistent effects of water temperature, water pressure, or spray setting on overall emission rates were apparent, although water temperature and spray setting did have an effect when varied within a single shower sampling run. Salt solutions were injected into the source water during some tests to assess the effects of total dissolved solids on particle emission rates. Injection of salts was shown to increase the PM2.5 particle formation rate by approximately one third, on average, for a doubling in tap water-dissolved solids content; PM10 source strengths approximately doubled under these conditions, because very few particles >10 microm were formed.  相似文献   

18.
The body of information presented in this paper is directed to those individuals concerned with the measurement of the size distribution of particulate matter in air. The light scattering instrument described herein is characterized by the fact that it can accurately size particles almost independently of their index of refraction. The basic concept involves the simultaneous measurement of the intensity of light scattered by a single particle at two small scattering angles. The ratio of the two intensities is directly related io ine size of ihe pariicle, and for scattering angles of 5° and 10° the effective range of the instrument is 0.2 to 4 μm. The air flows through the optical system at such a rate that approximately 25 μs are required to determine the size of each particle, and concentrations as high as 104 particles/cc can be measured without dilution and without serious coincidence effects. By employing a multichannel analyzer as the data storage and readout device it is possible to detect changes in particulate size distribution within a few seconds. Calibration of the instrument has been performed using polystyrene latex spheres and materials having a wide range of index of refraction and shape including carbon black, iron oxide and spores.  相似文献   

19.
Reactions between ozone and terpenes have been shown to increase the concentrations of submicron particles in indoor settings. The present study was designed to examine the influence of air exchange rates on the concentrations of these secondary organic aerosols as well as on the evolution of their particle size distributions. The experiments were performed in a manipulated office setting containing a constant source of d-limonene and an ozone generator that was remotely turned “on” or “off” at 6 h intervals. The particle number concentrations were monitored using an optical particle counter with eight-channels ranging from 0.1–0.2 to>2.0 μm diameter. The air exchange rates during the experiments were either high (working hours) or low (non-working hours) and ranged from 1.6 to>12 h−1, with intermediate exchange rates. Given the emission rates of ozone and d-limonene used in these studies, at an air exchange rate of 1.6 h−1 particle number concentration in the 0.1–0.2 μm size-range peaked 1.2 h after the ozone generator was switched on. In the ensuing 4.8 h particle counts increased in successive size-ranges up to the 0.5–0.7 μm diameter range. At higher air exchange rates, the resulting concentrations of total particles and particle mass (calculated from particle counts) were smaller, and at exchange rates exceeding 12 h−1, no excess particle formation was detectable with the instrument used in this study. Particle size evolved through accretion and, in some cases, coagulation. There was evidence for coagulation among particles in the smallest size-range at low air exchange rates (high particle concentrations) but no evidence of coagulation was apparent at higher air exchange rates (lower particle concentrations). At higher air exchange rates the particle count or size distributions were shifted towards smaller particle diameters and less time was required to achieve the maximum concentration in each of the size-ranges where discernable particle growth occurred. These results illustrate still another way in which ventilation affects human exposures in indoor settings. However, the ultimate effects of these exposures on health and well being remain to be determined.  相似文献   

20.
This study investigated the biodegradation of the phthalate esters (PAEs) di-n-butyl phthalate (DBP) and di-(2-ethyl hexyl) phthalate (DEHP) in sludge and sludge-amended soil. DBP (100 mg kg?1) and DEHP (100 mg kg?1) were added to sewage sludge, which was subsequently added to soil. The results showed that sewage sludge can degrade PAEs and the addition of sewage sludge to soil enhanced PAE degradation. Sludge samples were separated into fractions with various particle size ranges, which spanned 0.1–0.45 μm to 500–2000 μm. The sludge fractions with smaller particle sizes demonstrated higher PAE degradation rates. However, when the different sludge fractions were added to soil, particle size had no significant effect on the rate of PAE degradation. The results from this study showed that microbial strains F4 (Rhodococcus sp.) and F8 (Microbacterium sp.) were constantly dominant in the mixtures of soil and sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号