首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yu BW  Jin GZ  Moon YH  Kim MK  Kyoung JD  Chang YS 《Chemosphere》2006,62(3):494-501
The metallurgy industry and municipal waste incinerators are considered the main sources of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) in many countries. This study investigated the emission factors and total emissions of PCDD/Fs and dioxin-like polychlorinated biphenyls (PCBs) emitted from metallurgy industries (including ferrous and nonferrous foundries) in Korea. The toxic equivalency (TEQ) emission factor of PCDD/Fs was the highest for secondary copper production, at 24451 ng I-TEQ/ton. The total estimated emissions of PCDD/Fs from these sources were 35.259 g I-TEQ/yr, comprising 0.088 g I-TEQ/yr from ferrous foundries, 31.713 g I-TEQ/yr from copper production, 1.716 g I-TEQ/yr from lead production, 0.111 g I-TEQ/yr from zinc production, and 1.631 g I-TEQ/yr from aluminum production. The total estimated annual amounts of dioxin-like PCBs emitted from these sources were 13.260 g WHO-TEQ/yr, comprising 0.014 g WHO-TEQ/yr from ferrous foundries, 12.675 g WHO-TEQ/yr from copper production, 0.170 g WHO-TEQ/yr from lead production, 0.017 g WHO-TEQ/yr from zinc production, and 0.384 g WHO-TEQ/yr from aluminum production. The highest emission factor was found for secondary copper smelting, at 9770 ng WHO-TEQ/ton.  相似文献   

2.
Abstract

Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5–20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.5 are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.  相似文献   

3.
Mercury emissions concentrations, emission factors, and the total national emission from major anthropogenic sources in Korea for the year 2007 were estimated. Uncontrolled and controlled mercury emission factors and the total emission from each source types are presented. The annual national mercury emission from major anthropogenic sources for the year 2007, on average was 12.8 ton which ranged from 6.5 to 20.2 ton. Averaged emissions of elemental, oxidized, and particulate mercury were estimated at 8.25 ton, 3.69 ton, and 0.87 ton, respectively. Due to the removal of a major portion of particulate and oxidized mercury species, elemental mercury was dominant in stack emission. About 54.8% of mercury emission was contributed by industrial sources, 45.0% by stationary combustion sources and 0.02% by mobile sources. Thermal power plants, oil refineries, cement kilns and incinerators (municipal, industrial, medical, sewage sludge) were the major mercury emitters, contributing about 26%, 25%, 21% and 20%, respectively to the total mercury emission. Other sources (crematory, pulp and paper manufacturing, nonferrous metals manufacturing, glass manufacturing) contributed about 8% of the total emission. Priority should be given in controlling mercury emissions from coal-fired power plants, oil refineries, cement kilns and waste incinerators. More measurements including natural and re-emission sources are to be carried out in the future in order to have a clear scenario of mercury emission from the country and to apply effective control measures.  相似文献   

4.
Travel on unpaved public roads is the single largest anthropogenic source of emissions of airborne particles in the U.S. The average impact of this source on average annual mean total suspended particulate (TSP) concentrations varies from 0.05 μg/m3 (Alaska) to 11 μg/m3 (Pennsylvania). When compared by contributions to the variance in state to state TSP levels, their impact is as great as the impact of emissions from all conventional sources. Common emission control methods include paving, oiling, speed reduction, watering, and application of calcium chloride. Total annual emissions are, in most cases, most economically reduced by either speed control or paving, with expected average control costs of less than $0.50/lb of emissions reductions. For most roads with average daily traffic flows above 100 vehicles per day, paving is shown to control emissions at average costs of less than $0.05/lb. In some situations, the costs of paving are more than offset by reductions in maintenance costs. Thus it would appear that, even accounting for the order of magnitude lower impact on statewide average concentration per ton of particles emitted from open sources, control of dust emissions from unpaved roads offers an economical means for reducing ambient TSP levels.  相似文献   

5.
Abstract

Chemical composition and particle size data for particulate emissions from stationary sources are required for environmental health effect assessments, air chemistry studies and for air quality modeling investigations such as source apportionment. The Information presented In this paper is directed to those individuals concerned with these environmental Investigations. In this study, particulate emissions from a group of non-ferrous smelters have been physically and chemically characterized. Emission samples were collected at the baghouse outlets from smelter furnaces and at smelter acid plant stacks at three locations; a zinc, a lead, and a copper smelter.

Mass emission rate determinations were made by EPA reference methods. Cascade impactors were used to collect in-stack samples for particle size distribution measurements. Particulate samples for chemical characterization were collected on membrane filters for analysis by X-ray fluorescence spectroscopy. Development of measurement techniques required to determine the elemental composition of the total mass and sized fractions of the emission are discussed. Results of the tests at the three smelters include total mass and elemental emission rates, particle size distribution, and the elemental composition of the total particulate mass and of sized fractions from both the smelter furnaces and acid plants. The results obtained at the copper smelter may not be representative of the emissions at the many copper smelters where reverbatory furnaces have been replaced.  相似文献   

6.
The emissions from burning the residue following grass-seed harvest were determined by means of a combined laboratory-field study. Samples of the straw and stubble residue were burned in the laboratory burning tower at the University of California at Riverside. Complete analyses were determined for gaseous and particulate emissions for the important grass species from the Willamette Valley of Oregon. Particulate emissions averaged 15.6 lb/ton of fuel burned. Carbon monoxide averaged 101 lb/ton of fuel burned. Hydrocarbon emission averages, in pounds per ton of fuel burned, were 1.74 for saturates plus acetylene, 2.80 for defines, and 1.68 for ethylene. The NOx emission, at the temperature peak during the burn, averaged 29.3 ppm. Field studies, conducted by personnel from Oregon State University, measured only particulate emissions, carbon dioxide, and temperature over the burn. The carbon dioxide values were found to be similar to those obtained on the burning table at UCR and it was therefore concluded that the other gaseous emissions were similar and could be used as reasonably accurate for emission inventories. The temperature values obtained in the laboratory and field were also similar and further justifies extrapolating the burning table data to field situations. The particulate matter collected in the field studies averaged 15.55 lb of particulate per ton of fuel burned. This is the same average obtained for the burning table data which again serves to validate the emissions reported from Riverside. Much more variability was found in the particulate emissions obtained in the field which reflects the wider range of environmental conditions encountered in the field.  相似文献   

7.
ABSTRACT

The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed.

Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 × 109 kg NOx and 1.2 x 108 kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including  相似文献   

8.
Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47 × 107 particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated.

Implications:?A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.  相似文献   

9.
Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5-20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.s are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.  相似文献   

10.
Abstract

This paper describes systematic work undertaken in the field of atmospheric emissions from Portuguese Kraft pulp mills. The study led to the determination of emission factors from stationary sources, which proved to be an important tool for assessing the need for investment in air pollution abatement equipment, specifically for malodorous gases.  相似文献   

11.
12.
This paper presents an examination of industrial coal-fired boiler waste products. Presently the atmospheric emissions from all new boilers larger than 250 × 106 Btu/hr are controlled by existing New Source Performance Standards, and boilers smaller than 250 × 106 Btu/hr are controlled to levels required by the regulations of the particular state in which the facility is located. The 1977 Clean Air Act Amendments, however, specify categories of sources for which EPA must develop revised New Source Performance Standards. Industrial coal-fired boilers are included as one of these categories, and a relevant issue concerns the potential amount of solid waste generated as a result of tightened emission standards that require flue gas desulfurization. This paper examines the air quality and solid waste impacts of moderate and stringent emission controls for particulate and SO2 emissions from industrial coal-fired boilers.

Comparisons are presented of physical and chemical characterizations of the emissions and solid wastes produced when boilers are equipped with particulate and SO2 control equipment. The SO2 systems examined are lime spray drying, lime/limestone, double alkali, sodium throwaway, physically cleaned coal, and fluidized-bed combustion. The solid waste disposal alternatives and the disposal costs are discussed. The most common disposal methods used are landfill for dry wastes and impoundment for sludges, with special wastewater treatment requirements for the sodium throwaway aqueous wastes.  相似文献   

13.
Carbon monoxide, the most abundant air pollutant found in the atmosphere generally exceeds that of all other pollutants combined (excluding C02). An estimated tonnage of >87 X 106 of CO was emitted in the United States from major technological sources alone during 1966. More than 90% of the total CO emitted from fossil fuels is derived from gasoline powered motor vehicles. Other sources of CO include emissions from coal and fuel oil burning, aircraft and open burning. Some CO is also formed by certain vegetation and marine invertebrates (siphonophores). Chemical reactions of CO in the upper and lower atmosphere are discussed. Chemical oxidation of CO in the lower atmosphere by molecular oxygen is very slow. The exact duration of CO in the lower atmosphere is not known with certainty; however, the mean residence time has been variously estimated to be between 0.3 and 5.0 years. In the absence of scavenging processes the estimated world-wide CO emission would be sufficient to raise the’atmospheric level by 0.03 ppm per year, yet the background levels of CO in clean air do not appear to be increasing. Several potential sinks are discussed. Knowledge of the mechanism of process of removal of CO from the lower atmosphere is unsatisfactory; the process, at the present time, cannot be identified with certainty.  相似文献   

14.
Abstract

A remote sensing device was used to obtain on-road and in-use gaseous emission measurements from three fleets of schools buses at two locations in Washington State. This paper reports each fleet’s carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), and nitrogen dioxide (NO2) mean data. The fleets represent current emission retrofit technologies, such as diesel particulate filters and diesel oxidation catalysts, and a control fleet. This study shows that CO and HC emissions decrease with the use of either retrofit technology when compared with control buses of the same initial emission standards. The CO and HC emission reductions are consistent with published U.S. Environmental Protection Agency verified values. The total oxides of nitrogen (NOx), NO, and the NO2/NOx ratio all increase with each retrofit technology when compared with control buses. As was expected, the diesel particulate filters emitted significantly higher levels of NO2 than the control fleet because of the intentional conversion of NO to NO2 by these systems. Most prior research suggests that NOx emissions are unaffected by the retrofits; however, these previous studies have not included measurements from retrofit devices on-road and after nearly 5 yr of use. Two 2006 model-year buses were also measured. These vehicles did not have retrofit devices but were built to more stringent new engine standards. Reductions in HCs and NOx were observed for these 2006 vehicles in comparison to other non-retrofit earlier model-year vehicles.  相似文献   

15.
Particulate emission sampling was conducted at Dofasco’s No. 2 Coke Want Quench Tower in August 1977. The sampling was performed by York Research Corporation using EPA developed quench tower sampling techniques. Particulate emissions averaged 0.245 lb/ton of coal over 17 tests. The mist eliminator in the tower consists of two rows of zig-zag baffles inclined at 20° from the vertical. Particle size data indicated that the majority of the particulate emissions were less than 10 microns in diameter. A mathematical model was used to predict the effect of particle size and gas velocity on collection efficiency. Pressure drop and re-entrainment are two restrictions which are considered in baffle design. Quench towers are the largest contributor to Dofasco’s allowable off-the-property suspended particulate impingement concentration.  相似文献   

16.
This study was aimed at evaluating the effects of gasoline-ethanol blends on the exhaust emissions in a catalyst-equipped four-stroke moped engine. The ethanol was blended with unleaded gasoline in at percentages (10, 15, and 20% v/v). The regulated pollutants and the particulate matter emissions were evaluated over the European ECE R47 driving cycle on the chassis dynamometer bench. Particulate matter was characterized in terms of total mass collected on filters and total number ofparticles in the range 7 nm-10 microm measured by electrical low-pressure impactor (ELPI). In addition, particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions were evaluated to assess the health impact of the emitted particulate. Finally, an accurate morphological analysis was performed on the particulate by high-resolution transmission electron microscope (TEM) equipped with a digital image-processing/data-acquisition system. In general, CO emission reductions of 60-70% were obtained with 15 and 20% v/v ethanol blends, while the ethanol use did not reduce hydrocarbon (HC) and NOx emissions. No evident effect of ethanol on the particulate mass emissions and associated PAHs emissions was observed. Twenty-one PAHs were quantified in the particulate phase with emissions ranging from 26 to 35 microg/km and benzo[a]pyrene equivalent (BaPeq) emission factors from 2.2 to 4.1 microg/km. Both particulate matter and associated PAHs with higher carcinogenic risk were mainly emitted in the submicrometer size range (<0.1 microm). On the basis of the TEM observations, no relevant effect of the ethanol use on the particulate morphology was evidenced, showing aggregates composed ofprimary particles with mean diameters in the range 17.5-32.5 nm.  相似文献   

17.
ABSTRACT

The visual impact of primary particles emitted from stacks is regulated according to stack opacity criteria. In-stack monitoring of the flue gas opacity allows plant operators to ensure that the plant meets U.S. Environmental Protection Agency opacity regulations. However, the emission of condensable gases such as SO3 (that hydrolyzes to H2SO4), HCl, and NH3, which may lead to particle formation after their release from the stack, makes the prediction of stack plume opacity more difficult.

We present here a computer simulation model that calculates the opacity due to both primary particles emitted from the stack and secondary particles formed in the atmosphere after the release of condensable gases from the stack. A comprehensive treatment of the plume rise due to buoyancy and momentum is used to calculate the location at which the condensed water plume has evaporated (i.e., where opacity regulations apply).

Conversion of H2SO4 to particulate sulfate occurs through nucleation and condensation on primary particles. A thermodynamic aerosol equilibrium model is used to calculate the amount of ammonium, chloride, and water present in the particulate phase with the condensed sulfate. The model calculates the stack plume opacity due to both primary and secondary particles. Examples of model simulations are presented for three scenarios that differ by the emission control equipment installed at the power plant: (1) electrostatic precipitators (ESP), (2) ESP and flue gas desulfurization, and (3) ESP and selective catalytic reduction. The calculated opacity is most sensitive to the primary particulate emissions. For the conditions considered here, SO3 emissions showed only a small effect, except if one assumes that most H2SO4 condenses on primary particles. Condensation of NH4Cl occurs only at high NH3 emission rates (about 25 ppm stack concentration).  相似文献   

18.
Abstract

With the recent focus on fine particle matter (PM2.5),new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference.The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2, nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of ~10-4 lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with ~5 × 10-3 lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of ~0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or woodfueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing “true” particulate carbon emission results.  相似文献   

19.
Abrasive blasting was performed in enclosed conditions to evaluate the effect of blast pressure, feed rate and surface contamination on Total Particulate Matter (TPM) emission factors for copper slag. Stack sampling methods were used to collect uncontrolled TPM. Emission factors were calculated as grams of TPM emitted per pound of copper slag used (g/lb) and grams of TPM emitted per square foot of area cleaned (g/sq.ft). Emission factor models were developed to study variation of TPM emission factors with pressure, feed rate and surface contamination. These models can be used to reduce emissions by selecting optimum operating condition as well as to determine emission factors at any operating conditions, within the tested range, for copper slag.  相似文献   

20.
Abstract

This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for ~113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号