首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
ABSTRACT

At conditions typical of a bag filter exposed to a coal-fired flue gas that has been adiabatically cooled with water, calcium hydroxide and calcium silicate solids were exposed to a dilute, humidified gas stream of nitrogen dioxide (NO2) and sulfur dioxide (SO2) in a packed-bed reactor. A prior study found that NO2 reacted readily with surface water of alkaline and non-alkaline solids to produce nitrate, nitrite, and nitric oxide (NO). With SO2 present in the gas stream, NO2 also reacted with S(IV), a product of SO2 removal, on the exterior of an alkaline solid. The oxidation of S(IV) to S(VI) by oxygen reduced the availability of S(IV) and lowered removal of NO2. Subsequent acidification of the sorbent by the removal of NO2 and SO2 facilitated the production of NO. However, the conversion of nitrous acid to sulfur-nitrogen compounds reduced NO production and enhanced SO2 removal. A reactor model based on empirical and semi-empirical rate expressions predicted rates of SO2 removal, NO2 removal, and NO production by calcium silicate solids. Rate expressions from the reactor model were inserted into a second program, which predicted the removal of SO2 and NOx by a continuous process, such as the collection of alkaline solids in a baghouse. The continuous process model, depending upon inlet conditions, predicted 30-40% removal for NO and 50-90% removal for SO2. These x 2 results are relevant to dry scrubbing technology for combined SO2 and NOx removal that first oxidizes NO to NO2 by the addition of methanol into the flue duct.  相似文献   

2.
ABSTRACT

This paper presents a technique for the complete, simultaneous decomposition of CO2, SO2, and NOx, as well as the simultaneous removal of fly ash by ultra-high voltage pulse activation. Ultra-high voltage narrow pulse is used to make the gases in the reactor become active molecules, which are then dissociated into nonpoisonous gas molecules and solid particles under the control of a directional reaction model. By using a sufficient charge and a strong electric field, the fly ash can be removed. It becomes the carrier of C and S, and its efficiency is 99.5%. Owing to the action of catalyst B (using Ni as the mother's body), the activation energy of CO2, SO2, and NOx gases is reduced in great magnitude, and their removal efficiency can reach 75~90% at normal pressure and 180 °C.  相似文献   

3.
Abstract

The speciation of Hg in coal-fired flue gas can be important in determining the ultimate Hg emissions as well as potential control options for the utility. The effects of NOx control processes, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), on Hg speciation are not well understood but may impact emissions of Hg. EPRI has investigated the reactions of Hg in flue gas at conditions expected for some NOx control processes. This paper describes the methodology used to investigate these reactions in actual flue gas at several power plants. Results have indicated that some commercial SCR catalysts are capable of oxidizing elemental Hg in flue gas obtained from the inlets of SCR or air heater units. Results are affected by various flue gas and operating parameters. The effect of flue gas composition, including the presence of NH3, has been evaluated. The influence of NH3 on fly ash Hg reactions also is being investigated.  相似文献   

4.
The nitrogen oxides (NOx) reduction technology by combustion modification which has economic benefits as a method of controlling NOx emitted in the combustion process, has recently been receiving a lot of attention. Especially, the moderate or intense low oxygen dilution (MILD) combustion which applied high temperature flue gas recirculation has been confirmed for its effectiveness with regard to solid fuel as well. MILD combustion is affected by the flue gas recirculation ratio and the composition of recirculation gas, so its NOx reduction efficiency is determined by them. In order to investigate the influence of factors which determine the reduction efficiency of NOx in MILD coal combustion, this study changed the flow rate and concentration of nitrogen (N2), carbon dioxide (CO2) and steam (H2O) which simulate the recirculation gas during the MILD coal combustion using our lab-scale drop tube furnace and performed the combustion experiment. As a result, its influence by the composition of recirculation gas was insignificant and it was shown that flue gas recirculation ratio influences the change of NOx concentration greatly. Implications: We investigated the influence of factors determining the nitrogen oxides (NOx) reduction efficiency in MILD coal combustion, which applied high-temperature flue gas recirculation. Using a lab-scale drop tube furnace and simulated recirculation gas, we conducted combustion testing changing the recirculation gas conditions. We found that the flue gas recirculation ratio influences the reduction of NOx emissions the most.  相似文献   

5.
Abstract

A novel process for removal of nitrogen oxides (NOx) from flue gases with iron filings reduction following complex absorption in iron-ethylenediaminetetraacetic acid aqueous solution is proposed. The reaction mechanism involved in the process is discussed briefly. The parameters influencing the process, including the concentration of ferrous chelates, initial pH, amount of iron filings, temperature, flow rate of the flue gas, and inlet nitric oxide concentration and oxygen content of the flue gas, are researched in detail. The optimal NOx removal conditions are established. The regeneration and circular utilization of the absorption solution also is studied.  相似文献   

6.
Abstract

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from ~96% at the inlet of the reactor to ~80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

7.
The body of Information presented in this paper is directed to those Individuals concerned with the removal of NOx in combustion flue gases. A catalytic process for the selective reduction of nitrogen oxides by ammonia has been investigated. Efforts were made toward the development of catalysts resistant to SOx poisoning. Nitrogen oxides were reduced over various metal oxide catalysts in the presence or absence of SOx(SO2 and SO3). Catalysts consisting of oxides of base metals (for example, Fe2O3) were easily poisoned by SO3, forming sulfates of the base metals. A series of catalysts which are not susceptible to the SOx poisoning has been developed. The catalysts possess a high activity and selectivity over a wide range of temperatures, 250—450°C. The catalysts were tested in a pilot plant which treated a flue gas containing 110-150 ppm NOx, 660-750 ppm SO2, and 40-90 ppm SO3. The pilot plant was operated at 350°C and at a space velocity of 10,000 h-1. The removal of nitrogen oxides was more than 90% for several months.

A mechanism of the NO-NH3 reaction has also been investigated. It is found that NO reacts with NH3 at a 1:1 mole ratio in the presence of oxygen and the reaction is completely inhibited by the absence of oxygen. The experimental data show that the NO-NH3 reaction in the presence of oxygen is represented byNO + NH3 + 1/4 O2 = N2 + 3/2 H2O.  相似文献   

8.
ABSTRACT

This article presents the results of an industrial-scale study (on 400 MWe lignite fired unit) of simultaneous NOx, SO2, and HgT removal in FGD absorber with oxidant injection (NaClO2) into flue gas. It was confirmed that the injection of sodium chlorite upstream the FGD (Flue Gas Desulfurization) absorber oxidize NO to NO2, Hg0 to Hg2+, and enhancing NOx and HgT removal efficiency from exhaust gas in FGD absorber. Mercury removal efficiency grows with the rise of degree of oxidation NO to NO2 and was limited by the phenomenon of re-emission. For NOx removal the most critical parameters is slurry pH and temperature. There was no negative effect on sulfur dioxide removal efficiency caused by oxidant injection in tested FGD absorber. Based on the data provided, NOx and HgT emissions can be reduced by adjusting the FGD absorber operating parameters combined with oxidant injection.  相似文献   

9.
低温选择性催化还原(SCR)脱硝是国内外脱硝技术研发的热点,但目前主要集中在实验室小试范围,无法完全反映催化剂在实际烟气中的运行状况。在30 t/h循环流化床燃煤锅炉脱硫除尘装置后建设了2 000~5 000 m3/h的SCR脱硝中试装置,经系统研究发现,中试使用的蜂窝式催化剂对SO2和NO具有很强的吸附能力,且反应温度、喷氨速率和气体空速均会影响催化脱硝效率。为期5 d的连续运行实验结果表明,催化剂的脱硝效率一直稳定在30%~50%,并未发现明显的失活,这证明设计除雾除尘器、较大的混合器、混合器与反应器间较长的管路均有利于缓解催化剂因SO2、H2O和飞灰中的碱性金属导致的失活。  相似文献   

10.
Abstract

Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+).

The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.  相似文献   

11.
Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium- and titanium-based composite honeycomb catalyst and enhanced urea (NH2CONH2) were used with a natural-gas-fired furnace at a NOx concentration of 110 ppm. Changes in SNCR chemical injection temperature and stoichiometry led to varying levels of post-furnace ammonia (NH3), which acts as the reductant feed to the downstream SCR catalyst. The urea-based chemical could routinely achieve SNCR plus SCR total NOx reductions of 85 percent with less than 3 ppm NH3 slip at reductant/NOx stoichiometries ranging from about 1.5 to 2.5 and SCR space velocities of 18,000 to 32,000 h?1. This pilot-scale research has shown that SNCR and SCR can be integrated to achieve high NOx removal. SNCR provides high temperature reduction of NOx followed by further removal of NOx and minimization of NH3 slip by a significantly downsized (high-space velocity) SCR.  相似文献   

12.
Data on the effect of several combustion modifications on the formation of nitrogen oxides and on boiler efficiency were acquired and analyzed for a 110 MW gas fired utility boiler. The results from the study showed that decreasing the oxygen in the flue gas from 2.2% to 0.6% reduced the NOx formation by 33% and also gave better boiler efficiencies. Flue gas recirculation through the bottom of the firebox was found to be ineffective. Staged combustion was found to reduce the NOx emissions by as much as 55 % while decreasing the efficiency by about 5%. Adjustment of the burner air registers reduced the NOx formation by about 20 ppm. The lowest NOx emissions of 42 ppm (at about 3% O2) in the stack was obtained for air only to one top burner and 0.5% oxygen in the flue gas.  相似文献   

13.
From March 23rd to 26th, 1987, the city of New Orleans hosted 350 attendees, including representatives from 15 foreign countries, at the 1987 Joint Symposium on Stationary Combustion NOx Control. Cosponsored by the Electric Power Research Institute (EPRI) and the U.S. Environmental Protection Agency (EPA), the symposium provided attendees the opportunity to hear 49 papers in nine sessions covering technological and regulatory developments on NOx control in the United States and abroad since the May 1985 symposium in Boston. Session topics included general environmental issues, low-NOx combustion equipment (i.e., low-NOx burners, reburning, etc.), flue gas treatment, fundamental combustion research, and special issues for cyclone coal-fueled boilers, oil- and gas-fired boilers, and industrial combustion applications.

Advances to the state-of-the-art presented at this symposium include: improved and/or newly applied combustion modifications for pulverized coal-fired boilers; further analyses of reburning, the leading combustion modification option for cyclone-equipped boilers; initial experiences with catalytic flue gas treatment in Europe; studies of NOx control retrofit options for oil- and gas-fired utility systems; and new technology developments for coal, oil, and gas fueled utility and industrial combustors.

This paper summarizes those presentations that discussed significant changes since May 1985 in areas of potential interest to EPRI and its utility members. Where appropriate, they include our perspectives on the applicability of these newly disclosed findings to utility systems.  相似文献   

14.
氧化锰矿渣改性制备SCR脱硝催化剂   总被引:2,自引:1,他引:1  
以锰酸钾生产过程中产生的氧化锰矿渣为原料,制备了一系列Mn基SCR脱硝催化剂。研究了活性炭、二氧化钛、以及含锰量的变化对催化剂的脱硝活性的影响。结果表明,直接由矿渣制备的催化剂和添加活性炭、二氧化钛制备的催化剂,其最大脱硝率分别为40%和78%。XPS表征发现催化剂中的锰元素存在多种氧化价态,活性炭的加入在一定程度上改变了不同价态之间的相对含量;在矿渣中加入硫酸锰后,发现总锰含量达到10%时,催化剂的最大脱硝率从78%降低至57%,XRD测试发现硫酸锰的加入导致S2O27-物种的生成,可能是引起催化剂活性下降的原因之一;而加入醋酸锰至总锰含量达到10%时,增大了催化剂的活性温度窗口,当总锰含量达到20%时,在空速10 000 h-1条件下,催化剂的最大脱硝率达到86.7%。  相似文献   

15.
滤料负载粉尘层对气态汞脱除性能的实验研究   总被引:1,自引:0,他引:1  
通过不同性能纤维滤料负载燃煤飞灰粉尘层,来模拟袋式除尘器滤袋表面粉尘附着层,进而研究袋滤器用不同性能纤维滤料和粉尘附着层对燃煤烟气中Hg0的联合脱除性能。在固定床实验系统上分别进行了不同纤维滤料和燃煤飞灰粉尘层,以及经实验优选得到的华博特滤料负载燃煤飞灰粉尘层脱除燃煤烟气中Hg0的实验研究。结果表明,燃煤飞灰粉尘层和华博特滤料对Hg0分别有一定的脱除作用,脱除效率可达35%和42.5%,它们对Hg0的脱除是物理吸附和化学吸附共同作用的结果;同时,华博特滤料负载燃煤飞灰粉尘层对Hg0的联合脱除效率受到吸附反应温度、入口汞浓度和烟气停留时间等因素的影响,最佳脱汞率可达64.4%;吸附反应温度越高,脱除效率越低;烟气停留时间越大,脱除效率越高;入口汞浓度的提高并不一定提高华博特滤料负载飞灰粉尘层的脱汞效果。  相似文献   

16.
Long XL  Xiao WD  Yuan WK 《Chemosphere》2005,59(6):811-817
An innovative catalyst system has been developed to simultaneously remove NO and SO2 from combustion flue gas. Such catalyst system may be introduced to the scrubbing solution using ammonia solution to accomplish sequential absorption and catalytic oxidation of both NO and SO2 in the same reactor. When the catalyst system is utilized for removing NO and SO2 from the flue gas, Co(NH3)(6)2+ ions act as the catalyst and I- as the co-catalyst. Dissolved oxygen, in equilibrium with the residual oxygen in the flue gas, is the oxidant. The overall removal process is further enhanced by UV irradiation at 365 nm. More than 95% of NO is removed at a feed concentration of 250-900 ppm, and nearly 100% of SO2 is removed at a feed concentration of 800-2500 ppm. The sulfur dioxide co-existing in the flue gas is beneficial to NO absorption into hexamminecobalt(II)/iodide solution. NO and SO2 can be converted to ammonium sulfate and ammonium nitrate that can be used as fertilizer materials. The process described here demonstrates the feasibility of removing SO2 and NO simultaneously only by retrofitting the existing wet ammonia flue-gas-desulfurization (FGD) scrubbers.  相似文献   

17.
In the present study, an attempt has been made to grow microalgae Scenedesmus quadricauda, Chlorella vulgaris and Botryococcus braunii in mixotropic cultivation mode using two different substrates, i.e. sewage and glucose as organic carbon sources along with flue gas inputs as inorganic carbon source. The experiments were carried out in 500 ml flasks with sewage and glucose-enriched media along with flue gas inputs. The composition of the flue gas was 7 % CO2, 210 ppm of NO x and 120 ppm of SO x . The results showed that S. quadricauda grown in glucose-enriched medium yielded higher biomass, lipid and fatty acid methyl esters (FAME) (biodiesel) yields of 2.6, 0.63 and 0.3 g/L, respectively. Whereas with sewage, the biomass, lipid and FAME yields of S. quadricauda were 1.9, 0.46, and 0.21 g/L, respectively. The other two species showed closer results as well. The glucose utilization was measured in terms of Chemical Oxygen Demand (COD) reduction, which was up to 93.75 % by S. quadricauda in the glucose-flue gas medium. In the sewage-flue gas medium, the COD removal was achieved up to 92 % by S. quadricauda. The other nutrients and pollutants from the sewage were removed up to 75 % on an average by the same. Concerning the flue gas treatment studies, S. quadricauda could remove CO2 up to 85 % from the flue gas when grown in glucose medium and 81 % when grown in sewage. The SO x and NO x concentrations were reduced up to 50 and 62 %, respectively, by S. quadricauda in glucose-flue gas medium. Whereas, in the sewage-flue gas medium, the SO x and NO x concentrations were reduced up to 45 and 50 %, respectively, by the same. The other two species were equally efficient however with little less significant yields and removal percentages. This study laid emphasis on comparing the feasibility in utilization of readily available carbon sources like glucose and inexpensive leftover carbon sources like sewage by microalgae to generate energy coupled with economical remediation of waste. Therefore on an industrial scale, the sewage is more preferable. Because the results obtained in the laboratory demonstrated both sewage and glucose-enriched nutrient medium are equally efficient for algae cultivation with just a slight difference. Essentially, the sewage is cost effective and easily available in large quantities compared to glucose.  相似文献   

18.

Activated carbon was one of the main adsorptions utilized in elemental mercury (Hg0) removal from coal combustion flue gas. However, the high cost and low physical adsorption efficiency of activated carbon injection (ACI) limited its application. In this study, an ultra-high efficiency (nearly 100%) catalyst sorbent-Sex/Activated carbon (Sex/AC) was synthesized and applied to remove Hg0 in the simulated flue gas, which exhibited 120 times outstanding adsorption performance versus the conventional activated carbon. The Sex/AC reached 17.98 mg/g Hg0 adsorption capacity at 160 °C under the pure nitrogen atmosphere. Moreover, it maintained an excellent mercury adsorption tolerance, reaching the efficiency of Hg0 removal above 85% at the NO and SO2 conditions in a bench-scale fixed-bed reactor. Characterized by the multiple methods, including BET, XRD, XPS, kinetic and thermodynamic analysis, and the DFT calculation, we demonstrated that the ultrahigh mercury removal performance originated from the activated Se species in Sex/AC. Chemical adsorption plays a dominant role in Hg0 removal: Selenium anchored on the surface of AC would capture Hg0 in the flue gas to form an extremely stable substance-HgSe, avoiding subsequent Hg0 released. Additionally, the oxygen-containing functional groups in AC and the higher BET areas promote the conversion of Hg0 to HgO. This work provided a novel and highly efficient carbon-based sorbent -Sex/AC to capture the mercury in coal combustion flue gas.

Selenium-modified porous activated carbon and the interface functional group promotes the synergistic effect of physical adsorption and chemical adsorption to promote the adsorption capacity of Hg0.

  相似文献   

19.
A novel technique has been developed for flue gas NOX reduction through the injection of plasma-treated ammonia and its decomposition products. Numerical investigation of the chemical kinetics shows nearly complete NO removal when ammonia radicals are injected into the flue gas. The feasibility of this new technique was experimentally explored on a small-scale laboratory combustor at Carnegie Mellon University and concurrently on a larger-scale combustor at the DOE Pittsburgh Energy Technology Center. Preliminary experimental results have shown that ammonia plasma-injection is more effective than simple ammonia-injection at low flue gas temperatures. NOX reduction of 85 to 90 percent was achieved at a low plasma power input. This technique is expected to provide additional opportunities for inexpensive and effective NOX reduction in stationary sources.  相似文献   

20.
Concepts for controlling SO2 from fossil fuels can be separated into two main categories: (1) Residual and vacuum gas oil desulfurization and (2) Flue gas desulfurization. The Kiyoura-T.I.T. process confines itself to the desulfurization of flue gas. It employs vandium oxide as a catalyst which oxidizes the sulfur dioxide to trioxide, followed by a gaseous phase reaction of ammonia. The end product, ammonium sulfate is removed by an electrostatic precipitator. (The details were presented at annual meetings of APCA in 1966 and 1967 as 1 and II.) Flue gas is passed through cyclone and dust filter to remove dust. Under normal operating conditions almost all of the dust is removed at the filters. The author carried out experiments to determine whether there was any effect on the activity of the catalyst, assuming that a portion of the dust escapes into the stream along the flue. It has been generally accepted that in fuel oil firing steam power plants, about 100 mg./nm3 of dust including carbon, hydrocarbon, and ash are normally contained in the flue stream. The carbon and hydrocarbon is oxidized readily at the filters and exists only as ash. An amount of ash equivalent to the amount assumed to have settled on the catalyst over a period of 3–12 months, was placed on the catalyst, and experiments were carried out. The SO2 conversion efficiency was measured and found to be over 93%. The results showed that at the actual operational temperature of 450°C, ash had practically no effect at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号