首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this paper is to describe ozone production in forest slash burn plumes. Plumes from controlled fires in the state of Washington were monitored using an instrumented aircraft. Ozone, oxides of nitrogen, condensation nuclei, and visual range (nephelometer) were measured continuously on board the plane. Airborne grab samples were collected for detailed hydrocarbon analysis.

The slash burn plumes were found to contain significant quantities of ozone. A buildup of 40–50 ppb above the ambient background ozone concentrations was not unusual. Hydrocarbon analyses revealed the presence of many photochemically reactive olefins in the plume. Hydrocarbon/NO x ratios were favorable for photochemical oxidant production.  相似文献   

2.
The inhibitory effect of aniline in photochemical smog reactions was studied using actual Toronto air samples. An aniline concentration of 0.81 pphm had negligible effect in a light traffic air sample containing negligible NO, whereas 20 pphm in a heavy traffic sample caused a 70% decrease in the oxidant dosage, a 50% decrease in the NO2 peak and a four-fold increase in the NO half-life. In experiments with propylene in synthetic mixtures, the half-life of propylene was increased from 144 min. to 192 min. by the present of 20 pphm of aniline. In addition, a thirty-fold increase in condensation nuclei was produced following a one hour induction period. A chemical mechanism is proposed which is consistent with these results. Although the condensation nuclei detected may be too small to produce light scattering, they may be retained in the lung. In addition they may grow in size. These consequences do not favour the use of aniline as an inhibitor in photochemical smog.  相似文献   

3.
In the summers of 1960 and 1961, groups from the Canada Department of Agriculture, the Meteorological Service of Canada, and the Canada Department of National Health and Welfare conducted a joint study in a tobacco-growing area along the north shore of Lake Erie. The purpose of the study was to determine the causal agent for weather fleck damage to tobacco crops. A number of air pollutants were monitored and the results correlated with extensive observations of meteorological phenomena and effects on rate of growth and fleck damage to leaves of tobacco plants in experimental plots. Ozone concentrations followed a diurnal cycle, rising a few hours after sunrise, peaking in early afternoon at about 5 pphm, and dropping to a minimum of less than 1 pphm during the night. Other measurements indicated the presence of NO2 in the order of 1 pphm, aldehydes about 0.2 pphm or lower, and negligible concentrations of SO2. Cracking of stretched rubber strips followed the ozone values although, in general, the cracking index was greater than could be attributed to ozone (by oxidized KI) alone. The maximum ozone value recorded during the two growing seasons was IS pphm. A dosage of 20 pphm-hr was found sufficient to cause weather fleck or ozone damage to susceptible tobacco leaves. In addition meteorological data could be used to predict weather fleck attacks one to four days in advance.  相似文献   

4.
Measurement of NO2 and NO has been carried out in Piedmont, N. C. and in the southern Appalachian Mountains. Average values for the Piedmont were: continuous NO2 measured 30 ft above surface, 0.76 pphm (14.3 μg/m3), 1 20 ft, 0.61 pphm (11.5 μg/m3); simultaneous values (also Piedmont) (2-hr discrete samples) taken at an earlier time at 4 ft, NO2, 0.56 pphm (10.6 μg/m3), NO, 0.19 pphm (2.34 μg/m3). The mountain top values (5120 ft, 1573 m) were: NO2, 0.46 pphm (6.4 μg/m3), NO, 0.26 pphm (2.72 μg/m3). The results of this study furnish further proof that tropospheric NO and NO2 are produced at the surface of the earth. Data obtained are consistent with the belief that a major sink for NOx is reaction with O3 and ultimate conversion to nitrate.

Ozone values frequently increased and NOx values decreased ahead of cold fronts, probably as a result of deep vertical mixing. Also, in small scale turbulence the changes in NOx values and in the O3 values tended to be “out of phase,” i.e., as O3 concentration increased, NOx concentration decreased and vice versa. Values of NOx from Green Knob, N. C. (mountain top) also tended to be higher at times when O3 values were lowest.

The NO2 hourly average values in Piedmont, N. C, demonstrated a diurnal cycle reminiscent of diurnal urban changes. An early morning peak was followed by a minimum in mid-afternoon. Next, the values rose to a broad evening peak and then decreased slowly during the night. Reported urban concentrations are usually about ten times those found in Piedmont, N. C.  相似文献   

5.
The purpose of this paper is to describe oxidant production and transport along the western shore of Lake Michigan. Air quality and meteorological data were collected in this area of the midwest during the summers of 1976–1978 using a ground-based laboratory and an Instrumented aircraft. Ozone, oxides of nitrogen, hydrocarbons (both total and individual), halocarbons, and numerous meteorological parameters were monitored continuously at the ground site near Kenosha, WI. Aircraft measurements included ozone, oxides of nitrogen, condensation nuclei, visual range (nephelometer), sulfur dioxide, temperature, and relative humidity.  相似文献   

6.
We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the “Ratio”) from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios <1 and NOx at Ratios >2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria, the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2, and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g., Chicago), the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.  相似文献   

7.
High speed instrumentation requires a colorimetric reagent capable of detecting traces of nitrogen dioxide with little delay for color development. Rate of color development and sensitivity of Griess-type reagent have been improved by adding a promoter (R-salt) and optimizing the concentrations of diazotizing and coupling reagents. Field tests show that the new instrument-reagent combination can resolve short-duration peaks in NO2 concentrations of 5 to 10 pphm.  相似文献   

8.
Measurements of air pollutants from a background site in central London are analysed. These comprise hourly data for CO, NO, NO2, O3, SO2 and PM10 from 1996 to 2008 and particle number count from 2001 to 2008. The data are analysed in terms of long-term trends, annual, weekly and diurnal cycles, and autocorrelation and cross-correlation functions. CO, NO and NO2 show a typical traffic-associated pattern with two daily peaks and lesser concentrations at the weekend. Particle number count and PM10 show a similar cycle, but with smaller amplitude. Ozone has an annual cycle with a maximum in May, influenced by the spring maximum in background ozone, but the diurnal and weekly cycles are dominated by losses through reaction with nitric oxide. Particle number count shows a minimum corresponding with maximum air temperatures in August, whereas the CO, NO NO2 and SO2 show a minimum in June/July. There is a lower particle count to NOx ratio at the background site compared to a central London kerbside site (Marylebone Road) and a seasonal pattern in particle count to NOx and PM10 ratios consistent with loss of nanoparticles by evaporation during atmospheric transport. Sulphur dioxide peaks in the morning in summer, but at midday in winter consistent with emissions from elevated sources mixing down from aloft as the diurnal mixed layer deepens. Implications for epidemiological studies of air quality and health are discussed. Sulphur dioxide, carbon monoxide, nitric oxide and nitrogen dioxide show clear downward trends over the measurement period, PM10 declines initially before levels stabilised, and ozone concentrations increased.  相似文献   

9.
We analyse the air quality data measured at a green area of Buenos Aires City (Argentina) during 38 days in winter. We study the relationships between ambient concentrations of nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3) and nitrogen oxides (NOx=NO+NO2). The variation of the level of oxidant (OX=O3+NO2) with the NOx is obtained. It can be seen that the level of OX at a given location is made up of two contributions: one independent and another dependent on the NOx concentration. The first one can be considered as a regional contribution, equivalent to the background O3 concentration and the second one as a local contribution that depends on the level of primary pollution. Local oxidant sources may include direct NO2 emissions, the reaction of NO with O2 at high-NOx levels, and the emission of species that promote the conversion of NO to NO2. The final category of emissions may include the nitrous acid (HONO) that is emitted directly in vehicle exhaust. Finally, we present a diurnal variation of the local as well as regional contributions and the dependence of the last one on wind direction.  相似文献   

10.
The photolysis of nitrogen dioxide and formaldehyde are two of the most influential reactions in the formation of photochemical air pollution, and their rates are computed using actinic flux determined from a radiative transfer model. In this study, we compare predicted and measured nitrogen dioxide photolysis rate coefficients (jNO2). We used the Tropospheric Ultraviolet-Visible (TUV) radiation transfer model to predict jNO2 values corresponding to measurements performed in Riverside, California as part of the 1997 Southern California Ozone Study (SCOS’97). Spectrally resolved irradiance measured at the same site allowed us to determine atmospheric optical properties, such as aerosol optical depth and total ozone column, that are needed as inputs for the radiative transfer model. Matching measurements of aerosol optical depth, ozone column, and jNO2 were obtained for 14 days during SCOS’97. By using collocated measurements of the light extinction caused by aerosols and ozone over the full height of the atmosphere as model input, it was possible to predict sudden changes in jNO2 resulting from atmospheric variability. While the diurnal profile of the rate coefficient was readily reproduced, jNO2 model predicted values were found to be consistently higher than measured values. The bias between measured and predicted values was 17–36%, depending on the assumed single scattering albedo. By statistical analysis, we restricted the most likely values of the single scattering albedo to a range that produced bias on the order of 20–25%. It is likely that measurement error is responsible for a significant part of the bias. The aerosol single scattering albedo was found to be a major source of uncertainty in radiative transfer model predictions. Our best estimate indicates its average value at UV-wavelengths for the period of interest is between 0.77 and 0.85.  相似文献   

11.
This investigation used an acid medium for sampling atmospheric oxidants. The acid iodide oxidant procedure was unaffected by air or oxygen, temperature variance, and reducing gases (sulfur dioxide and hydrogen sulfide.) The method possessed good color stability. The method also agreed favorably with the 1 or 2% neutral buffered iodide method when a chromium trioxide scrubber was required to remove the reducing gases from the latter procedure.

The acid oxidant absorption solution of 1 3 ml in a midget impinger contained 10 ml of 1.5% potassium iodide in a 0.1 N sodium hydroxide solution and 3 ml of acetic acid (1:5) which produced a solution of approximately 3.8 pH. Particulate matter was removed by a glass wool attachment to the midget impinger. The air was sampled with a Gelman Sequential Sampler at the rate of 1.41 liters per minute. After the oxidant sample was collected, the absorbing solution was transferred to a graduated cylinder and the volume was adjusted to 25 ml with distilled water. The absorbance was read at 355 millimicrons wavelength by a spectrophotometer in a 1 cm cell. The acid oxidant method was effective between 1 to 70 pphm of ozone.  相似文献   

12.
Long-standing measurement techniques for determining ground-level ozone (O3) and nitrogen dioxide (NO2) are known to be biased by interfering compounds that result in overestimates of high O3 and NO2 ambient concentrations under conducive conditions. An increasing near-ground O3 gradient (NGOG) with increasing height above ground level is also known to exist. Both the interference bias and NGOG were investigated by comparing data from a conventional Federal Equivalent Method (FEM) O3 photometer and an identical monitor upgraded with an “interference-free” nitric oxide O3 scrubber that alternatively sampled at 2 m and 6.2 m inlet heights above ground level (AGL). Intercomparison was also made between a conventional nitrogen oxide (NOx) chemiluminescence Federal Reference Method (FRM) monitor and a new “direct-measure” NO2 NOx 405 nm photometer at a near-road air quality measurement site. Results indicate that the O3 monitor with the upgraded scrubber recorded lower regulatory-oriented concentrations than the deployed conventional metal oxide–scrubbed monitor and that O3 concentrations 6.2 m AGL were higher than concentrations 2.0 m AGL, the nominal nose height of outdoor populations. Also, a new direct-measure NO2 photometer recorded generally lower NO2 regulatory-oriented concentrations than the conventional FRM chemiluminescence monitor, reporting lower daily maximum hourly average concentrations than the conventional monitor about 3 of every 5 days.

Implications: Employing bias-prone instruments for measurement of ambient ozone or nitrogen dioxide from inlets at inappropriate heights above ground level may result in collection of positively biased data. This paper discusses tests of new regulatory instruments, recent developments in bias-free ozone and nitrogen dioxide measurement technology, and the presence/extent of a near-ground O3 gradient (NGOG). Collection of unbiased monitor inlet height–appropriate data is crucial for determining accurate design values and meeting National Ambient Air Quality Standards.  相似文献   


13.
ABSTRACT

The rate of formation of secondary particulate matter (PM) in power plant plumes varies as the plume material mixes with the background air. Consequently, the rate of oxidation of sulfur dioxide (SO2) and nitrogen dioxide (NO2) to sulfate and nitric acid, respectively, can be very different in plumes and in the background air (i.e., air outside the plume). In addition, the formation of sulfate and nitric acid in a power plant plume is a strong function of the chemical composition of the background air and the prevailing meteorological conditions.

We describe the use of a reactive plume model, the Reactive and Optics Model of Emissions, to simulate sulfate and nitrate formation in a power plant plume for a variety of background conditions. We show that SO2 and NO2 oxidation rates are maximum in the background air for volatile organic compound (VOC)-limited airsheds but are maximum at some downwind distance in the plume when the background air is nitrogen oxide (NOx)-limited. Our analysis also shows that it is essential to obtain measurements of background concentrations of ozone, aldehydes, peroxyacetyl nitrate, and other VOCs to properly describe plume chemistry.  相似文献   

14.
In a study of the ozone-induced needle blight of eastern white pine in central New York, acute injuries naturally induced on field trees during a year of relatively low ozone concentrations (1 966) were compared with injuries induced during a year of higher concentrations (1967). Injuries were more frequent and severe and were associated with higher mean ozone concentrations in 1967 than in 1966. Characteristic symptoms were induced on foliage of pine branches exposed to controlled doses of ozone as low as 7 ± 1 pphm for four hours or 3 ± 1 pphm for 48 hours. Such doses were equalled or exceeded two and four times, respectively, in the field during the 1 967 season. Ozone sensitivity of pine needle tissue was increased by fumigation in atmospheres containing water mist. High concentrations of ozone (40-60 pphm) caused general injury of foliage of both ozone-susceptible and resistant trees; the symptoms were unlike those found in the field or caused by fumigation with low concentrations of ozone.  相似文献   

15.
ABSTRACT

A speciated, hourly, and gridded air pollutants emission modeling system (SHEMS) was developed and applied in predicting hourly nitrogen dioxide (NO2) and ozone (O3) levels in the Seoul Metropolitan Area (SMA). The primary goal of the SHEMS was to produce a systemized emission inventory for air pollutants including ozone precursors for modeling air quality in urban areas.

The SHEMS is principally composed of three parts: (1) a pre-processor to process emission factors, activity levels, and spatial and temporal information using a geographical information system; (2) an emission model for each source type; and (3) a post-processor to produce report and input data for air quality models through database modeling. The source categories in SHEMS are point, area, mobile, natural, and other sources such as fugitive emissions. The emission database produced by SHEMS contains 22 inventoried compounds: sulfur dioxide, NO2, carbon monoxide, and 19 speciated volatile organic compounds. To validate SHEMS, the emission data were tested with the Urban Airshed Model to predict NO2 and O3 concentrations in the SMA during selected episode days in 1994. The results turned out to be reliable in describing temporal variation and spatial distribution of those pollutants.  相似文献   

16.
Abstract

Combustion flue gases of three different industrial boilers firing miscellaneous fuels were monitored for a twoweek period. Nitric oxide (NO), sulfur dioxide (SO2), carbon monoxide (CO), carbon dioxide (CO2), and total hydrocarbons (CxHy) were continuously measured using single-component gas analyzers in parallel with a lowresolution Fourier Transform Infrared (FTIR) gas analyzer. Hydrogen chloride (HCl) was measured continuously using the FTIR analyzer and semi-continuously using a traditional liquid-absorption technique. Nitrous oxide (N2O), nitrogen dioxide (NO2), and water vapor (H2O) were continuously measured using the FTIR analyzer only. Laboratory tests were conducted prior to the field measurements to assess the detection limits of the different measurement methods for each gas component. No significant differences were found between the results of the low-resolution FTIR analyzer and the single-component analyzers or the liquid absorption method.  相似文献   

17.
Two indicator pollutants, carbon monoxide (CO) for mobile source influence and sulfur dioxide (SO2) for stationary source influence, were used to estimate source-type contributions to ambient NO2 levels in a base year and to predict NO2 concentrations in a future year. For a specific source-receptor pair, the so-called influence coefficient of each of three source categories (mobile sources, power plants, and other stationary sources) was determined empirically from concurrent measurements of CO and SO2 concentrations at the receptor site and CO and SO2 emissions from each source category in the source area. Those coefficients, which are considered time invariant, were used in conjunction with the base year and future year NO x emission values to estimate source-type contribution to ambient NO2 levels at seven study sites selected from the Greater Los Angeles area for both the base year period, 1974 through 1976, and the future goal year of 1987 in which the air quality standards for NO2 are to be attained. The estimated NO2 air quality at the seven sites is found to meet the national annual standard of 5 pphm and over 99.9% of total hours, the California 1-hr NO2 standard of 25 pphm in 1987. The estimated power plant contributions to ambient NO2 levels are found to be considerably smaller than those to total NO x emissions in the area. Providing that reasonably complete air quality and emissions data are available, the present analysis method may prove to be a useful tool in evaluating source contributions to both short-term peak and long-term average NO2 concentrations for use in control strategy development.  相似文献   

18.
Air quality models rely upon simplified photochemical mechanisms to efficiently represent the thousands of chemical species that interact to form air pollution. Uncertainties in the chemical reaction rate constants and photolysis frequencies that comprise those mechanisms can generate uncertainty in the estimation of pollutant concentrations and their responsiveness to emission controls. A high-order sensitivity analysis technique is applied to quantify the extent to which reaction rate uncertainties influence estimates of ozone concentrations and their sensitivities to precursor emissions during an air pollution episode in Houston, Texas. Several reactions were found to have much larger proportional effects on ozone’s sensitivities to emissions than on its concentrations. In particular, uncertainties in photolysis frequencies and in the rate of reaction between NO2 and OH to form nitric acid can significantly influence the magnitude and sign of peak ozone sensitivity to nitrogen oxide (NOx) emissions. Ozone sensitivity to VOCs exhibits a much more muted response to uncertainties in the reaction rate constants and photolysis frequencies considered here. The results indicate the importance of accurate reaction rate constants to predicting the ozone impacts resulting from NOx emission controls.  相似文献   

19.
On hot summer days in the eastern United States, electricity demand rises, mainly because of increased use of air conditioning. Power plants must provide this additional energy, emitting additional pollutants when meteorological conditions are primed for poor air quality. To evaluate the impact of summertime NOx emissions from coal-fired electricity generating units (EGUs) on surface ozone formation, we performed a series of sensitivity modeling forecast scenarios utilizing EPA 2018 version 6.0 emissions (2011 base year) and CMAQ v5.0.2. Coal-fired EGU NOx emissions were adjusted to match the lowest NOx rates observed during the ozone seasons (April 1–October 31) of 2005–2012 (Scenario A), where ozone decreased by 3–4 ppb in affected areas. When compared to the highest emissions rates during the same time period (Scenario B), ozone increased ~4–7 ppb. NOx emission rates adjusted to match the observed rates from 2011 (Scenario C) increased ozone by ~4–5 ppb. Finally in Scenario D, the impact of additional NOx reductions was determined by assuming installation of selective catalytic reduction (SCR) controls on all units lacking postcombustion controls; this decreased ozone by an additional 2–4 ppb relative to Scenario A. Following the announcement of a stricter 8-hour ozone standard, this analysis outlines a strategy that would help bring coastal areas in the mid-Atlantic region closer to attainment, and would also provide profound benefits for upwind states where most of the regional EGU NOx originates, even if additional capital investments are not made (Scenario A).

Implications: With the 8-hr maximum ozone National Ambient Air Quality Standard (NAAQS) decreasing from 75 to 70 ppb, modeling results indicate that use of postcombustion controls on coal-fired power plants in 2018 could help keep regions in attainment. By operating already existing nitrogen oxide (NOx) removal devices to their full potential, ozone could be significantly curtailed, achieving ozone reductions by up to 5 ppb in areas around the source of emission and immediately downwind. Ozone improvements are also significant (1–2 ppb) for areas affected by cross-state transport, especially Mid-Atlantic coast regions that had struggled to meet the 75 ppb standard.  相似文献   


20.
We report here direct observation by differential optical absorption spectroscopy (DOAS) of the formation of ppb levels of gaseous nitrous acid (MONO) from the reaction of ppm levels of nitrogen dioxide (NO2) with water vapor, in an indoor environment. The rate of formation of HONO displayed first order kinetics with respect to NO2 with a rate of (0.25 ±0.04) ppb min−1 per ppm of NO2 present. Assuming a lifetime of l h with respect to both physical and chemical removal processes for HONO, this leads to an estimated steady state concentration of ~ 15 ppb of HONO per ppm of NO2 present. This relatively high level of HONO associated with NO2-air mixtures raises new questions concerning the health implications of elevated NO2 concentrations in indoor environments e.g. HONO is a respirable nitrite known to convert secondary amines in vitro to carcinogenic nitrosamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号