首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Measurements collected using five real-time continuous airborne particle monitors were compared to measurements made using reference filter-based samplers at Bakersfield, CA, between December 2, 1998, and January 31, 1999. The purpose of this analysis was to evaluate the suitability of each instrument for use in a real-time continuous monitoring network designed to measure the mass of airborne particles with an aerodynamic diam less than 2.5 microns (PM2.5) under wintertime conditions in the southern San Joaquin Valley. Measurements of airborne particulate mass made with a beta attenuation monitor (BAM), an integrating nephelometer, and a continuous aerosol mass monitor (CAMM) were found to correlate well with reference measurements made with a filter-based sampler. A Dusttrak aerosol sampler overestimated airborne particle concentrations by a factor of approximately 3 throughout the study. Measurements of airborne particulate matter made with a tapered element oscillating microbalance (TEOM) were found to be lower than the reference filter-based measurements by an amount approximately equal to the concentration of NH4NO3 observed to be present in the airborne particles. The performance of the Dusttrak sampler and the integrating nephelometer was affected by the size distribution of airborne particulate matter. The performance of the BAM, the integrating nephelometer, the CAMM, the Dusttrak sampler, and the TEOM was not strongly affected by temperature, relative humidity, wind speed, or wind direction within the range of conditions encountered in the current study. Based on instrument performance, the BAM, the integrating nephelometer, and the CAMM appear to be suitable candidates for deployment in a real-time continuous PM2.5 monitoring network in central California for the range of winter conditions and aerosol composition encountered during the study.  相似文献   

2.
ABSTRACT

Measurements collected using five real-time continuous airborne particle monitors were compared to measurements made using reference filter-based samplers at Bakers-field, CA, between December 2, 1998, and January 31, 1999. The purpose of this analysis was to evaluate the suitability of each instrument for use in a real-time continuous monitoring network designed to measure the mass of airborne particles with an aerodynamic diam less than 2.5 μm (PM2.5) under wintertime conditions in the southern San Joaquin Valley. Measurements of airborne particulate mass made with a beta attenuation monitor (BAM), an integrating nephelometer, and a continuous aerosol mass monitor (CAMM) were found to correlate well with reference measurements made with a filter-based sampler. A Dusttrak aerosol sampler overestimated airborne particle concentrations by a factor of ~3 throughout the study. Measurements of airborne particulate matter made with a tapered element oscillating microbalance (TEOM) were found to be lower than the reference filter-based measurements by an amount approximately equal to the concentration of NH4NO3 observed to be present in the airborne particles. The performance of the Dusttrak sampler and the integrating nephelometer was affected by the size distribution of airborne particulate matter. The performance of the BAM, the integrating nephelometer, the CAMM, the Dusttrak sampler, and the TEOM was not strongly affected by temperature, relative humidity, wind speed, or wind direction within the range of conditions encountered in the current study. Based on instrument performance, the BAM, the integrating nephelometer, and the CAMM appear to be suitable candidates for deployment in a real-time continuous PM2.5 monitoring network in central California for the range of winter conditions and aerosol composition encountered during the study.  相似文献   

3.
The relationships between fine particle light scattering extinction coefficient, relative humidity and temperature can be used to quantify sulfate mass concentration and composition for laboratory generated and ambient aerosols. This measurement involves the use of an integrating nephelometer as well as a system for controlling the temperature and relative humidity of the air directly upstream of the nephelometer. Recent improvements in the control of these variables has subsequently enhanced our ability to detect the presence of sulfate compounds in complex atmospheric mixtures. Measurements at two urban sites (Seattle, WA and Riverside, CA) indicate the presence of fine presence of fine particle sulfate compounds mixed with more volatile compounds. Measurements at a ‘background’ site (Ozette Lake, WA) indicate a mixture of acidic sulfate compounds with compounds that are less volatile than (NH4)2SO4.  相似文献   

4.
The light scattering and absorption coefficients of fine atmospheric aerosol particles were recorded in Hungary under rural conditions in 1998–1999 by an integrating nephelometer and particle soot absorption photometer, respectively. In some cases optical properties in the fine size range were compared to those in the coarse particles. Results obtained indicate, as expected, that fine particles control the scattering and absorption caused by the aerosol. In 1999 the size distribution of aerosol particles was also monitored by means of an electric low pressure impactor (ELPI). This makes it possible the study of the relationship between the number, surface and mass concentration in the size range of 0.1–1.0 μm and the optical characteristics by also considering the chemical composition of the particles.  相似文献   

5.
Experimental relationships between the mass concentration of suspended particulate matter and the optical density of particulates collected on paper tape have been determined for the atmospheric aerosol and for aerosols of constant optical properties. Simultaneous samples were obtained on membrane filters (for gravimetric analysis) and on Whatman No. 4 paper tape (for optical evaluation). Sampling procedures were adopted which ensured that the efficiency of sampling was the same in both cases.

Consistent relationships between mass concentrations of suspended particulate matter and optical density expressed in terms of per cent transmittance or per cent reflectance were found for dispersions of coal, limestone, fly ash, and a coal-limestone mixture.

For atmospheric aerosol samples collected on the roof of the Graduate School of Public Health, University of Pittsburgh, the relationship between mass concentration and per cent transmittance or per cent reflectance was found to be linear over the range of values observed. The correlation coefficients were ?0.93 (for concentration versus per cent transmittance) and ?0.89 (for concentration versus per cent reflectance).  相似文献   

6.
The concentrations of monosaccharide anhydrides (levoglucosan, mannosan, galactosan) in PM1 and PM2.5 aerosol samples were measured in Brno and ?lapanice in the Czech Republic in winter and summer 2009. 56 aerosol samples were collected together at both sites to investigate the different sources that contribute to aerosol composition in studied localities. Daily PM1 and PM2.5 aerosol samples were collected on pre-fired quartz fibre filters.The sum of average atmospheric concentration of levoglucosan, mannosan and galactosan in PM1 aerosol in ?lapanice and Brno during winter was 513 and 273 ng m?3, while in summer the sum of average atmospheric concentration of monosaccharide anhydrides (MAs) was 42 and 38 ng m?3, respectively. The sum of average atmospheric concentration of MAs in PM1 aerosol formed 71 and 63% of the sum of MA concentration in PM2.5 aerosol collected in winter in ?lapanice and Brno, whereas in summer the sum of average atmospheric concentration of MAs in PM1 aerosol formed 45 and 43% of the sum of MA concentration in PM2.5 aerosol in ?lapanice and Brno, respectively.In winter, the sum of MAs contributed significantly to PM1 mass ranging between 1.37% and 2.67% of PM1 mass (Brno – ?lapanice), while in summer the contribution of the sum of MAs was smaller (0.28–0.32%). Contribution of the sum of MAs to PM2.5 mass is similar both in winter (1.37–2.71%) and summer (0.44–0.55%).The higher concentrations of monosaccharide anhydrides in aerosols in ?lapanice indicate higher biomass combustion in this location than in Brno during winter season. The comparison of levoglucosan concentration in PM1 and PM2.5 aerosol shows prevailing presence of levoglucosan in PM1 aerosol both in winter (72% on average) and summer (60% on average).The aerosol samples collected in ?lapanice and Brno in winter and summer show comparable contributions of levoglucosan, mannosan and galactosan to the total amount of monosaccharide anhydrides in both aerosol size fractions. Levoglucosan was the most abundant monosaccharide anhydride with a relative average contribution to the total amount of MAs in the range of 71–82% for PM1 aerosols and 52–79% for PM2.5 aerosols.  相似文献   

7.
Different monitoring parameters (PM mass concentrations, number–size distribution, black carbon, gaseous pollutants, and chemical composition, among others) are currently used in air quality studies. Urban aerosols are the result of several sources and atmospheric processes, which suggests that a single monitoring technique is insufficient to quantitatively evaluate all of them.This study assesses the suitability of a number of monitoring techniques (PM mass concentrations, number and size distribution of ultra-fine particles, levels of gaseous pollutants, and a complete chemical characterization of PM10 and PM2.5) by examining the response of those techniques to the different emission sources and/or atmospheric processes affecting an urban Mediterranean area (Barcelona, NE Spain).The results of this work reveal that the PM mass, the number concentration and the chemical composition give different, but complementary, information. Whereas the mineral matter, a key atmospheric aerosol component across the Mediterranean, is not properly quantitatively assessed by measuring sub-micrometric particles, the monitoring of the number concentration is indispensable to interpret the origin of specific aerosol episodes. Furthermore, the chemical composition yields very relevant information to deduce the causes of specific pollution episodes.The number concentration of ultra-fine particles in urban areas is strongly dependent upon vehicle exhaust emissions, which may cause adverse health impacts. Moreover, urban Mediterranean environments are favourable to produce nucleation-mode particles (<20 nm) with photochemical origin. In those cases, these particles are expected to be of high solubility and consequently their toxicity may differ from that of traffic-generated ultra-fine particles. Thus, the use of a single monitoring parameter to evaluate the health effects seems to be not enough.  相似文献   

8.
Considerable interest is currently directed toward atmospheric visibility and its relationship to particle size and mass concentration. Previous work has been limited to heavily polluted urban areas, and visibility studies have not included particle size characterization. An air sampling program was carried out in a nonurban, low pollution area to relate: (a) total particulate mass concentration measured with a high-volume sampler, (b) particulate mass size distribution measured with aerodynamic size selective samplers, and (c) visual range measured by the integrating nephelometer. For low suspended particulate mass concentrations, the following relationship was defined between visual range (Lv) and mass concentration (M ? μg/m3):  相似文献   

9.
Condensable vapours such as sulphuric acid form aerosol in the atmosphere by the competing mechanisms of condensation on existing aerosol and the nucleation of new aerosol. Observational and theoretical evidence for the relative magnitudes of the competing processes is reviewed, and a number of general conclusions are made. Condensation is sensitive to the sticking probability of sulphuric acid molecules on aerosol particles, but there is now good evidence that it should be close to unity. In this case, equilibration timescales between acid vapour and the aerosol in most of the atmosphere are of the order of minutes or less, so that the acid concentration on such timescales given simply by the production rate times the equilibration time. When the acid concentration exceeds a threshold, nucleation will occur. The atmospheric aerosol therefore follows a history of initial formation in a nucleation burst followed by growth and coagulation with final removal by precipitation. This leads to the inverse correlation between aerosol number concentration and mass concentration found by Clarke (1992. Journal of Atmospheric Chemistry 14, 479–488) in the free troposphere. Binary homogeneous nucleation of sulphuric acid/water droplets, for which various simplified rates are compared, may dominate in such regions, but other mechanisms are possible elsewhere. A detailed analysis is performed of the number concentrations, removal rates, and masses of the components of the different types of global aerosols proposed empirically by Jaenicke (1993. Tropospheric Aerosols, Aerosol-Cloud-Climate Interaction. Academic Press, New York). There is a striking correlation between number concentrations in the nucleation and accumulation modes; and the giant aerosol mode, which if it is present dominates the mass, has little effect on the gas-to-particle conversion process. The mass of the atmospheric aerosol is therefore uncorrelated with the magnitude of molecular aerosol removal by condensation.  相似文献   

10.
In this study, two method intercomparisons were performed. One thermal and two optical methods for the measurement of black carbon (BC) were applied to laboratory generated aerosols containing only BC. For the optical measurements, an aethalometer (Hansen et al., 1984. Science of Total Environment 36, 191–196) and an integrating sphere technique (Hitzenberger et al., 1996b. Journal of Geophysical Research 101, D14, 19 601–19 606) were used. The thermal method was described by Cachier et al. (1989a. Tellus 41B, 379–390). In an additional comparison, the integrating sphere was compared to a thermal optical technique (Birch and Cary, 1996. Aerosol Science Technology 25, 221–241) on ambient aerosol samples. The absorption coefficients were obtained from transmission measurements on filter samples for both the aethalometer and the integrating sphere. The BC mass concentration for the aethalometer was derived from this absorption measurement. The BC mass concentration for the integrating sphere, however, was obtained using an independent calibration curve. The agreement between the absorption coefficient σa obtained for the BC test aerosol on parallel filters with the aethalometer and the integrating sphere was satisfactory. The slope of the regression lines depended on filter type. A comparison between BC mass concentrations, however, showed that the aethalometer values were only 23% of those obtained by the integrating sphere technique indicating that for pure BC aerosols, the standard aethalometer calibration should not be used. Compared to the thermal method, the integrating sphere gave an overestimation of the BC mass concentrations by 21%. For the ambient samples, the integrating sphere and the thermal optical methods for BC mass concentration determination showed agreement within 5% of the 1 : 1 line, although the data were not so well correlated.  相似文献   

11.
This paper discusses the extent of Black Carbon (BC) radiative forcing in the total aerosol atmospheric radiative forcing over Pune, an urban site in India. Collocated measurements of aerosol optical properties, chemical composition and BC were carried out for a period of six months (during October 2004 to May 2005) over the site. Observed aerosol chemical composition in terms of water soluble, insoluble and BC components were used in Optical Properties of Aerosols and Clouds (OPAC) to derive aerosol optical properties of composite aerosols. The BC fraction alone was used in OPAC to derive optical properties of BC aerosols. The aerosol optical properties for composite and BC aerosols were separately used in SBDART model to derive direct aerosol radiative forcing due to composite and BC aerosols. The atmospheric radiative forcing for composite aerosols were found to be +35.5, +32.9 and +47.6 Wm?2 during post-monsoon, winter and pre-monsoon seasons, respectively. The average BC mass fraction found to be 4.83, 6.33 and 4 μg m?3 during the above seasons contributing around 2.2 to 5.8% to the total aerosol load. The atmospheric radiative forcing estimated due to BC aerosols was +18.8, +23.4 and +17.2 Wm?2, respectively during the above seasons. The study suggests that even though BC contributes only 2.2–6% to the total aerosol load; it is contributing an average of around 55% to the total lower atmospheric aerosol forcing due to strong radiative absorption, and thus enhancing greenhouse warming.  相似文献   

12.
An interdisciplinary field study designed to investigate the spatial and temporal variability of atmospheric aerosols during high particulate matter (PM) events along the US–Mexico border near Yuma, AZ was run during the week of March 18, 2007. The experiments were designed to quantify chemical composition and physical phenomena governing the transport of aerosols generated from episodic high PM events. The field study included two micrometeorological monitoring sites; one rural and one urban, equipped with sonic anemometers, continuous particulate concentration monitors and ambient aerosol collection equipment. In addition to the two main monitoring sites, five additional locations were equipped with optical particle counters to allow for the investigation of the spatial and temporal distribution of PM2.5 in the urban environment. In this paper, the meteorological and turbulence parameters governing the distribution and concentration of PM2.5 in the urban environment for two high-wind erosion events and one burning event are compared. The interaction between local atmospheric conditions and the particulate distribution is investigated. Results indicate that a single point measurement in the urban area of Yuma may not be sufficient for determining the ambient PM concentrations that the local population experiences; all three high PM events indicated PM2.5 varied considerably with maximum urban concentrations 5–10 times greater than the measured minima. A comparison of inorganic and carbonaceous content of the aerosols for the three high PM events is presented. The comparison shows an increase in silicon during crustal dust events and an increase in elemental and organic carbon during the burn event. Additional surface chemistry analysis, using time-of-flight secondary ion mass spectrometry (ToF-SIMS), for aerosols collected at the urban and rural sites during the burn event are discussed. The surface chemistry analysis provides positive ion mass spectra of organic and inorganic species in the ambient aerosol, and can be used to determine the type of combustion process that contributed to an increase in PM concentration during the burn event.  相似文献   

13.
A summer air quality monitoring campaign focusing on the evolution of ultrafine (<180 nm in diameter) particle concentrations was conducted at an urban site in Los Angeles during June–July 2006. Previous observations suggest that ultrafine aerosol at this site are generally representative of the Los Angeles urban environment. Continuous and intermittent gas and aerosol measurements were made over 4 weeks with consistent daily meteorological conditions. Monthly averages of the data suggest the strong influence of commute traffic emissions on morning observations of ultrafine particle concentrations. By contrast, in the afternoon our measurements provide evidence of secondary photochemical reactions becoming the predominant formation mechanism of ultrafine aerosols. The ultrafine number concentration peak occurs in the early afternoon, before the maximum ozone concentration is observed. The source of this offset is unknown and requires further investigation. It is possible that the chemical mechanisms responsible for secondary organic aerosol formation evolve as atmospheric conditions change and/or secondary semi-volatile components of the aerosol re-volatilize due to the elevated peak temperatures observed (ca. 30–35 °C) combined with the increased atmospheric dilution during that time. Measurements of the volatility of the ultrafine aerosol are consistent with this interpretation as overall volatility increases in the afternoon and there is less evidence of external mixing. Composition data presented in the companion paper support these conclusions [Ning et al., 2007. Daily variation in chemical characteristics of urban ultrafine aerosols and inference of their sources. Environmental Science and Technology, in press].  相似文献   

14.
Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet–visible (UV–vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C2–C8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.  相似文献   

15.
This paper describes the results of a study to determine the total mass and the mass distribution of atmospheric aerosols, especially that mass associated with particles greater than 10 μm diameter. This study also determined what fraction of the total aerosol mass a standard high-volume air sampler collects and what fraction and size interval settle out on a dust fall plate. A special aerosol sampling system was designed for this study to obtain representative samples of large airborne particles. A suburban sampling site was selected because no local point sources of aerosols existed nearby. Samples were collected under various conditions of wind velocity and direction to obtain measurements on different types of aerosols.

Study measurements show that atmospheric particulate matter has a bimodal mass distribution. Mass associated with large particles mainly ranged from 5 to 100 μm in size, while mass associated with small particles ranged from an estimated 0.03 to 5 μm in size. Combined, these two distributions produced a bimodal mass distribution with a minimum around 5 μm diameter. The high-volume air sampler was found to collect most of the total aerosol mass, not just that fraction normally considered suspended particulate. Dust fall plates did not provide a good or very useful measure of total aerosol mass. The two fundamental processes of aerosol formation, condensation and dispersion appear to account for the formation of a bimodal mass distribution in both natural and anthropogenic aerosols. Particle size distribution measurements frequently are in error because representative samples of large airborne particles are not obtained. Considering this descrepancy, air pollution regulations should specify or be based upon an upper particle size limit.  相似文献   

16.
Atmospheric carbonaceous aerosols were sampled discontinuously from July 2006 to December 2009 at Nam Co Comprehensive Observation and Research Station (NCOS) in the central Tibetan Plateau (TP). The mean daily concentration of carbonaceous aerosols increased from 268 to 330 ng?m?3, and pollution episodes could significantly increase the mean level of carbonaceous aerosols in the total mass concentration. Organic carbon was the main component of carbonaceous aerosols at NCOS, and black carbon (BC) accounted for 5.8 %. Seven-day air masses backward trajectories calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory model and the aerosol optical depth distribution in the TP and South Asia both suggested that atmospheric pollutants emitted from Northern India and South Asia could penetrate into central TP by southwest winds. Due to the seasonal variations of emission sources and regional atmospheric conditions, calculated BC deposition flux in the nonmonsoon season was higher than that in the monsoon season. Increased BC concentration in snowpack in winter from 2007 to 2009 indicated that the atmospheric environment in central TP became more polluted and the influences from human activities have strengthened. Pollution episodes could significantly increase BC concentrations in the snowpack on a seasonal scale, which would furthermore affect the surface albedo.  相似文献   

17.
The U.S. Environmental Protection Agency (EPA) has proposed a new secondary standard based on visibility in urban areas. The proposed standard will be based on light extinction, calculated from 24-hr averaged measurements. It would be desirable to base the standard on a shorter averaging time to better represent human perception of visibility. This could be accomplished by either an estimation of extinction from semicontinuous particulate matter (PM) data or direct measurement of scattering and absorption. To this end we have compared 1-hr measurements of fine plus coarse particulate scattering using a nephelometer, along with an estimate of absorption from aethalometer measurements. The study took place in Lindon, UT, during February and March 2012. The nephelometer measurements were corrected for coarse particle scattering and compared to the Filter Dynamic Measurement System (FDMS) tapered element oscillating microbalance monitor (TEOM) PM2.5 measurements. The two measurements agreed with a mass scattering coefficient of 3.3 ± 0.3 m2/g at relative humidity below 80%. However, at higher humidity, the nephelometer gave higher scattering results due to water absorbed by ammonium nitrate and ammonium sulfate in the particles. This particle-associated water is not measured by the FDMS TEOM. The FDMS TEOM data could be corrected for this difference using appropriate IMPROVE protocols if the particle composition is known. However, a better approach may be to use a particle measurement system that allows for semicontinuous measurements but also measures particle bound water. Data are presented from a 2003 study in Rubidoux, CA, showing how this could be accomplished using a Grimm model 1100 aerosol spectrometer or comparable instrument.

Implications: Visibility is currently based on 24-hr averaged PM mass and composition. A metric that captures diurnal changes would better represent human perception. Furthermore, if the PM measurement included aerosol bound water, this would negate the need to know particulate composition and relative humidity (RH), which is currently used to estimate visibility. Methods are outlined that could accomplish both of these objectives based on use of a PM monitor that includes aerosol-bound water. It is recommended that these techniques, coupled with appropriate measurements of light scattering and absorption by aerosols, be evaluated for potential use in the visibility based secondary standard.  相似文献   

18.
Aerosol light-scattering in The Netherlands   总被引:2,自引:0,他引:2  
The relation between the (midday) aerosol light-scattering and the concentrations of nitrate and sulfate has been assessed at a site near the coast of the North Sea in The Netherlands. Midday was selected for the measurements because this is the time at which the aerosol is most effective in the scattering of solar radiation. Automated thermodenuders were used for the hourly measurement of the concentration of nitrate and sulfate with a lower detection limit of 0.1 μ m−3. The site is operational since October 1993. The first-year average dry aerosol light-scattering (measured with an integrating nephelometer at a wavelength of 525 nm) was 0.71 × 10−4 m1&#x0304;. In arctic marine air the aerosol light-scattering was a factor of 10 lower than the average value, in polluted continental air it was up to a factor of 10 higher. The ratio of the total aerosol light-scattering to the concentration of sulfate was 20 m2 g−1. The contribution of nitrate to the aerosol light-scattering was higher than that of sulfate in the winter and of about equal magnitude in the summer period. In November and December of 1993, the humidity dependence of the aerosol light-scattering was investigated. Two types of (continental) aerosol were found with respect to the humidity behavior. One type showed a significant increase in light-scattering at the deliquescence points of ammonium nitrate and ammonium sulfate, with that of ammonium nitrate the most pronounced. The second type of continental aerosol did not show deliquescence, but followed the typical humidity dependence of aerosol in a supersaturated droplet state. In this latter aerosol type, nitrate dominated over sulfate. It was concluded from the study that the aerosol light-scattering in The Netherlands, in particular its humidity dependence, is governed by (ammonium) nitrate.  相似文献   

19.
A major difficulty encountered in laboratory research on the atmospheric interaction of an aerosol-gas system is the unstable nature of the aerosol phase. Previously reported aerosol stabilizing techniques often severely alter the aerosol so that laboratory results cannot be validly extrapolated to the atmospheric environment. A new technique which does not alter the nature of the aerosol is described in this paper.

Aerosol particles are deposited on an inert substrate such as Teflon beads. The deposition is carried out in a fluidized-bed to ensure discrete aerosol deposition and to achieve a uniform distribution of aerosol concentration on the supporting beads. Aerosol-gas interactions can be investigated conveniently by exposing these stabilized aerosols to the reacting gases in dynamic or static systems. Laboratory results obtained by using stabilized aerosols may be extrapolated to the atmospheric environment.

This aerosol stabilizing technique was incorporated into an investigation of the particulate-catalyzed atmospheric oxidation of sulfur dioxide. Teflon beads with deposited aerosol particles of CuCl2, MnCl2, and NaCI were exposed to 4–42 ppm of sulfur dioxide in a plug flow reactor. The rate of oxidation of sulfur dioxide was found to be influenced by type of catalyst, concentration of catalyst, relative humidity and concentration of sulfur dioxide. The rate of oxidation by sodium chloride particulate was measurable at low to moderate relative humidities (45–60%), but the rate was several times higher when the sodium chloride catalyst particles change from solid form into droplet form at high relative humidities (>80%).  相似文献   

20.
For continuous monitoring of atmospheric visibility in the city of Kwangju, Korea, a transmissometer system consisting of a transmitter and a receiver was installed at a distance of 1.91 km across the downtown Kwangju, Korea. At the transmitter site a nephelometer and an aethalometer were also installed to measure the scattering and absorption coefficients of the atmosphere, respectively. Unusually high number of Yellow Sand events had occurred in the Northeast Asia during the spring of 2000. Visibility in Kwangju under such conditions was greatly impaired over large area for a few days. In order to investigate the effects of Yellow Sand on visibility impairment, chemical and elemental analyses of aerosol samples were performed along with the optical measurement of visibility. Hourly averaged visual range decreased from 61.7 to 1.9 km when hourly averaged concentration of PM10 varied from 32.9 to 601.8 μg/m3 during Yellow Sand periods. Fine particulate (<2.5 μm) concentrations were relatively lower than coarse particulate matters. Results of the data analyses show that mineral dusts originated from continental sources were simultaneously transported along with anthropogenic sulfate aerosols and marine aerosols. Total light extinction coefficient, bext, proposed by the IMPROVE network showed poor correlation with bext measured by transmissometer. Coarse mass scattering efficiency was classified into three categories; ENHSOc, Emineral, and Esea-salt, which were determined as ammonium sulfate combined with nss-sulfate of 1.0, sea-salt of 0.4, and mineral of 0.77 m2/g, respectively. Mass fraction of NHSOc, sea-salt, and mineral dust was 0.20, 0.14, and 0.66, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号