首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
A large number of pressurized coal gasification processes being developed propose to use venturi scrubbers for particulate removal at high pressures. Theoretical predictions based on venturi scrubber performance models indicate that particle collection efficiency will decrease severely in these high gas pressure applications.

An exploratory theoretical and experimental program was performed to study the effect of gas pressure on venturi scrubber performance. Experiments were done on a 0.47 m3/s (1000 acfm) pilot scale venturi scrubber. Particle collection performance was determined as a function of scrubber pressure drop for venturi scrubbers operating In the range of 1-10 atm total pressure. Experimental results confirmed that the particle collection efficiency of venturi scrubbers decreases for a given scrubber pressure drop as total gas pressure Is increased. To achieve the same particle collection efficiency, the pressure drop across a venturi scrubber operated at 10 atm Is about 10 times that of the same scrubber operated at 1 atm pressure.  相似文献   

2.
A modified model of venturi scrubber performance has been developed that addresses two effects of liquid surface tension: its effect on droplet size and its effect on particle penetration into the droplet. The predictions of the model indicate that, in general, collection efficiency increases with a decrease in liquid surface tension, but the range over which this increase is significant depends on the particle size and on the scrubber operating parameters. The predictions further indicate that the increases in collection efficiency are almost totally due to the effect of liquid surface tension on the mean droplet size, and that the collection efficiency is not significantly affected by the ability of the particle to penetrate the droplet.  相似文献   

3.
Dust collection efficiency data were analyzed to determine better operating conditions for a two-dimensional circulating granular bed filter (CGBF). The dust collection efficiency in the granular bed was affected by the following operating parameters: the louver angle, the solids mass flow rate, and the particle size of the bed material. Experimental results showed that higher dust collection efficiency occurs when the solids mass flow rates were 20.34 +/- 0.24, 21.50 +/- 0.11, and 30.51 +/- 0.57 g/sec at louver angles of 45 degrees, 30 degrees, and 20 degrees, respectively. Optimal dust collection efficiency peaked with a louver angle of 30 degrees. Average particle sizes of bed material by sieve diameters (microm) of 795 microm had higher dust collection efficiency than the average collector particle size of 1500 microm. Dust collection efficiency is influenced by bed material attrition phenomenon, causing dust collection efficiency to decrease rapidly. The dust collection efficiency analysis not only found the system free of design defects but also assisted in the operation of the two-dimensional CGBF system.  相似文献   

4.
Abstract

Dust collection efficiency data were analyzed to determine better operating conditions for a two-dimensional circulating granular bed filter (CGBF). The dust collection efficiency in the granular bed was affected by the following operating parameters: the louver angle, the solids mass flow rate, and the particle size of the bed material. Experimental results showed that higher dust collection efficiency occurs when the solids mass flow rates were 20.34 ± 0.24, 21.50 ± 0.11, and 30.51 ± 0.57 g/sec at louver angles of 45°, 30°, and 20°, respectively. Optimal dust collection efficiency peaked with a louver angle of 30°. Average particle sizes of bed material by sieve diameters (μm) of 795 μm had higher dust collection efficiency than the average collector particle size of 1500 μm. Dust collection efficiency is influenced by bed material attrition phenomenon, causing dust collection efficiency to decrease rapidly. The dust collection efficiency analysis not only found the system free of design defects but also assisted in the operation of the two-dimensional CGBF system.  相似文献   

5.
Theoretical calculations and experimental measurements show that the collection of small aerosol particles (0.05 to 5 micron diameter range) by water droplets in spray scrubbers can be substantially increased by electrostatically charging the droplets and particles to opposite polarity. Measurements with a 140 acfm two chamber spray scrubber (7 seconds gas residence time) showed an increase in the overall particle collection efficiency from 68.8% tit uncharged conditions to 93.6% at charged conditions, with a dioctyl phthalate aerosol (1.05 μm particle mass mean diameter and 2.59 geometric standard deviation). The collection efficiency for 0.3 μm particles increased from 35 to 87% when charged. During 1973–1974 a 1000 acfm pilot plant electrostatic scrubber was constructed inside a 40 ft trailer for evaluation on controlling particu-late emissions from pulp mill operations (funded by Northwest Pulp and Paper Association). Field tests performed on the particle emissions exhausting from SO2 absorption towers treating the gases from a magnesium based sulfite recovery boiler have shown particle collection efficiencies ranging from about 60 to 99% by weight, depending on the electrostatic scrubber operating conditions. Energy requirements for the University of Washington electrostatic scrubber are about 0.5 hp/1000 acfm (350 Watts/1000 acfm) including gas pressure drop, water pressure drop, and electrostatic charging of the water spray droplets and the particles.  相似文献   

6.
To remove particles in corrosive gases generated by semiconductor industries, we have developed a novel non-metallic, two-stage electrostatic precipitator (ESP). Carbon brush electrodes and grounded carbon fiber-reinforced polymer (CFRP) form the ionization stage, and polyvinyl chloride collection plates are used in the collection stage of the ESP The collection performance of the ESP downstream of a wet scrubber was evaluated with KC1, silica, and mist particles (0.01-10 pm), changing design and operation parameters such as the ESP length, voltage, and flow rate. A long-term and regeneration performance (12-hr) test was conducted at the maximum operation conditions of the scrubber and ESP and the performance was then demonstrated for 1 month with exhaust gases from wet scrubbers at the rooftop of a semiconductor manufacturing plant in Korea. The results showed that the electrical and collection performance of the ESP (16 channels, 400x400 mm2) was maintained with different grounded plate materials (stainless steel and CFRP) and different lengths of the ionization stage. The collection efficiency of the ESP at high air velocity was enhanced with increases in applied voltages and collection plate lengths. The ESP (16 channels with 100 mm length, 400x400 mm2x540 mm with a 10-mm gap) removed more than 90% of silica and mistparticles with 10 and 12 kV applied to the ESPat the air velocity of 2 m/s and liquid-to-gas ratio of 3.6 L/m3. Decreased performance after 13 hours ofcontinuous operation was recovered to the initial performance level by 5 min of water washing. Moreover during the 1-month operation at the demonstration site, the ESP showed average collection efficiencies of 97% based on particle number and 92% based on total particle mass, which were achieved with a much smaller specific corona power of 0.28 W/m3/hr compared with conventional ESPs.  相似文献   

7.
Electrolyzed water (EW) is an effective disinfectant with a wide range of pH. EW in acid range was proved to be an ammonia absorbent which make it valuable for wet scrubbers used in animal feeding operations (AFOs). This study aimed to optimize the design and operating parameters of a wet scrubber with EW spray for ammonia removal, based on the size distribution of droplets, the property of EW and the reduction efficiency of ammonia. The optimized parameters included droplet size, nozzle flow rates, pH and available chlorine concentration (ACC) of EW, nozzle number at single stage, stage number, initial ammonia concentration and air speed in the duct. The ammonia removal efficiency increased with the decrease of droplet size and the increase of flow rate. The pH values of EW showed significant influence on ammonia removal efficiency (P ? 0.05), while ACC of the EW showed no significant influence (P > 0.05). For inlet ammonia concentration of 70 ppm with one and three spray stages, the wet scrubber with EW (pH = 1.35) spray was able to reduce 55.8 ± 4.3 % and 97.2 ± 3.0 % of ammonia, respectively, when the nozzles with 0.9 mm orifice diameter operated at a flow rate of 1.20 L min-1. Response surface analysis showed that orifice diameter, nozzle flow rate, and their combination were all significant factors impacting ammonia removal efficiency for both pH =1.35 and 5.50 at a 95% confidence level. Optimal ammonia removal efficiency was obtained at orifice diameter 0.9 mm and flow rate 1.20 L min-1 within the selected range. The results of this study demonstrated that wet scrubber with EW spray could be a very effective and feasible ammonia mitigation technology for animal feeding operation.

Implications: It is difficult to effectively reduce ammonia emitted from the animal feeding operations (AFOs). Both the acidity and disinfection effects of electrolyzed water (EW) make it a potential absorbent used for spray in wet scrubber to reduce the ammonia and microorganisms. Based on some preliminary field test results, lab tests were conducted to optimize the design and operation parameters of a wet scrubber with EW spray to improve the ammonia removal efficiency. A better understanding of the application and influence factors of the wet scrubber with EW spray can contribute to effective mitigation of ammonia emission from animal houses and improve the atmosphere air quality.  相似文献   


8.
The control of fugitive process emissions (FPE) with Spray Charging and Trapping (SCAT) scrubber was evaluated both theoretically and experimentally. The SCAT uses air curtain and/or jets to contain, convey, and divert the FPE into a charged spray scrubber.

Experiments were performed on an 8000 cfm bench-scale spray scrubber to verify the theory and feasibility of collecting fugitive particles with charged water spray. The effects of charge levels on drops and particles, nozzle type, drop size, gas velocity, and liquid/gas ratio on collection efficiency were determined experimentally. The results of the experiments and the comparison between theory and data are presented.

An air curtain was developed for conveying the FPE to the spray scrubber, deflecting the crosswind, and containing hot buoyant plume. The design and air flow field for the air curtain are presented.  相似文献   

9.
Compliance with sulfur oxides standards will in many cases result in the installation of scrubbing devices. If these devices operate on an effluent gas stream containing particulate as well as sulfur oxides, simultaneous removal would be expected. Since effective simultaneous removal of particulate matter and sulfur oxides is economically desirable, it is of considerable import to characterize scrubber designs being considered as sulfur oxide absorbers as particulate control devices; especially, for fine particulate control.

Data on the fine particle collection efficiency of sulfur oxides scrubbers at two power generating stations is presented. At the first, a venturi and a turbulent contacting absorber (TCA) both with capacities of 30,000 cfm were tested. At the second, a venturi with 600,000 scfm capacity was tested. Fine particle collection efficiency was determined at three pressure drops for the TCA using a cascade impactor. Results for the TCA show high removal efficiencies. It collected more than 90% of submicron particles when the pressure drop was nearly 10 in. H20. The overall particulate removal in the TCA scrubber as determined by modified method 5 or by Brink impactor was greater than 99% when the pressure drop was greater than 6 in. H20. For both the venturi scrubber at the Shawnee Steam Plant and that at the Mystic Power Station, the collection efficiency decreased rapidly with decreasing particle size in the fine particle region.  相似文献   

10.
The results of fractional and overall mass efficiency tests of a steam-ejector scrubber are presented. The tests were performed on one of seven modules of a full scale scrubber used for controlling particulate emissions from an open hearth furnace. Total flue gas particulate mass concentrations were determined at the inlet and outlet of the scrubber by conventional (Method 5) techniques. Inlet and outlet particulate concentrations as functions of diameter were determined on a mass basis using cascade impactors for sizes from about 0.3 μm to 5 μm, and on a number basis for diameters smaller than about 1 μm using optical and diffusional methods. Measurements were made under several scrubber operating conditions. The measured efficiencies based on total particulate mass concentrations with the scrubber operating under near optimum conditions ranged from 99.84 to 99.9%. The measured fractional efficiencies ranged from a maximum of 99.99% for particles having diameters of 1 μm to values of 97 and 99.9% for particles having diameters of 0.1, and 5 μm, respectively.  相似文献   

11.
循环流化床烟气脱硫系统中的压降是保证反应器安全运行的重要参数,了解反应器内的气固流动状况以及压降分布并对其加以调节是系统稳定运行的关键.通过分析循环流化床内气固两相的流动状态,基于一维轴向流动模型,研究循环流化床烟气脱硫系统内的压降轴向分布特性.模型预测结果表明,压降受烟气流速和循环流量影响下的变化趋势与实验结论一致,证明了模型的有效性.可以用于循环流化床内脱硫传质研究,以及为反应器的设计与运行提供指导.  相似文献   

12.
A concise, quantitative picture of the state of the art of particle scrubbing is presented in the form of performance prediction methods. A new relationship between the particle diameter collected at 50% efficiency and scrubber pressure drop for several of the most common scrubber types is a design tool of great utility. Scrubber capability for the collection of submicron particles by diffusion is described in a graph for several scrubber types.  相似文献   

13.
Comparative gas cleaning performance of a pilot-scale venturi scrubber with throat dimensions of 6 in. wide × 1 2 in. long × 1 2 in. deep was obtained for the following three methods of water injection: a system of spray nozzles located along each short side of the throat (Figure 2a); a continuous slot located immediately above the nozzles, along each short side of the throat (Figure 2b); and a weir located 2 ft above the spray nozzles along long side of the throat (Figure 2c). For each method of water injection the gas cleaning performance, as a function of the pressure drop, was measured by two tests: absorption of SO2 and collection efficiency for particles of methylene blue of controlled size.  相似文献   

14.
A new set of the cyclone efficiency data is reported. The particle collection efficiency data have been obtained as a function of particle size, flow rate, cyclone size, and gas properties. Cyclones of four different dimensions were used covering a flow rate range of 9.1–19.5 l min −1 and a particle size range of 0.5–25 μm. Both liquid and solid particles were used. For varying the gas properties, air and argon were used.The experimental results suggest that in addition to the gas viscosity, the gas density plays an equally important role in cyclone performance. It was found that increasing the gas density enhances particle collection characteristics. Among the several parameters tested, the Reynolds number using the inlet gas velocity and the exit tube diameter was found to show the strongest correlation on the cut size.  相似文献   

15.
The overall particle collection efficiencies of spray scrubbers using monodisperse droplets of 100,500, and 1000 microns diameter were calculated for the cases of evaporating and condensing droplets. The properties of the gas at the inlet to the spray scrubber were maintained constant at 150°F, 100% relative humidity, and 1 atmosphere pressure. At the liquid entrance to the spray scrubber, the water droplet temperature was 50° F for the condensing case and 180° F for the evaporating case. The liquid to gas flow rate ratio for all the calculations was held constant at 4 gal/1000 acf. The gas velocity in the co-current spray tower was 1 ft/sec in the downwind direction. The calculation results show that for the particles in the 0.01 to 10 Mm diameter range, the overall spray scrubber particle collection efficiency is greater with the cooler 50°F water (condensing case) than with the warmer 180°F water (evaporating case). The effect of diffusiophoresis and thermophoresis is noticeable for all the water droplet sizes considered, but is more significant for the larger water droplets. This greater effect for the larger water droplets compared to the smaller droplets is due to the longer existence of the temperature and water vapor concentration gradients between the water droplets and the surrounding gas.  相似文献   

16.
Particle collection by foam produced on sieve plate apparatus was studied in a 3 x 3 in. sq column and in a 2 in. diam circular column. Experimental data have been obtained for silica test dust, glass beads, sulfur aerosol, polystyrene beads, and extensively for methylene blue aerosol. A new technique utilizing the Goetz aerosol spectrometer was developed and was used to obtain the collection efficiency as a function of particle diameter. A correlation was developed based on inertial mechanism. In this correlation the collection efficiency is expressed as a function of inertial parameter and foam density. The pressure drop in the operating range varied from 2 to 4 in. of water.  相似文献   

17.
Liquid entrainment rate and drop size distribution were measured in the exhaust gas stream from a mobile bed scrubber. The pilot plant scrubber was 46 cm (18 in.) square and was packed with 3.8 cm (1.5 In.) diameter hollow polyethylene spheres to a static depth of 25 cm (10 in.). Entrainment flow rate depends on both gas and liquid rates. At a liquid/gas ratio of 6.7 l/m3 (50 gal/Mcf) and a superficial gas velocity of 2.6 m/sec (8.5 ft/sec) the entrainment flow rate was 0.0064 l/m3 (0.05 gal/Mcf) and at 3.75 m/sec (12.3 ft/sec) it was 0.031 l/m3 (0.23 gal/Mcf). The mass median drop diameter was about 400 nm at a liquid/gas ratio of 6.7 l/m3. The drop size distribution appears to be bimodal. Dye impregnated paper and cascade impactor techniques were used to measure drop size.  相似文献   

18.
A turbulent wet scrubber was designed and developed to scrub particulate matter (PM) at micrometer and submicrometer levels from the effluent gas stream of an industrial coal furnace. Experiments were conducted to estimate the particle removal efficiency of the turbulent scrubber with different gas flow rates and liquid heads above the nozzle. Particles larger than 1 µm were removed very efficiently, at nearly 100%, depending upon the flow rate, the concentration of the dust-laden air stream, and the water level in the reservoir. Particles smaller than 1 µm were also removed to a greater extent at higher gas flow rates and for greater liquid heads. Pressure-drop studies were also carried out to estimate the energy consumed by the scrubber for the entire range of particle sizes distributed in the carrier gas. A maximum pressure drop of 217 mm H2O was observed for a liquid head of 36 cm and a gas flow rate of 7 m3/min. The number of transfer units (NTU) analysis for the efficiencies achieved by the turbulent scrubber over the range of particles also reveals that the contacting power achieved by the scrubber is better except for smaller particles. The turbulent scrubber is more competent for scrubbing particulate matter, in particular PM2.5, than other higher energy or conventional scrubbers, and is comparable to other wet scrubbers of its kind for the amount of energy spent.

Implications: The evaluation of the turbulent scrubber is done to add a novel scrubber in the list of wet scrubbers for industrial applications, yet simple in design, easy to operate, with better compactness, and with high efficiencies at lower energy consumption. Hence the turbulent scrubber can be used to combat particulate from industrial gaseous effluents and also has a scope to absorb gaseous pollutants if the gases are soluble in the medium used for particles capture.  相似文献   

19.
为了进一步提高电除尘器的收尘效率,尤其是对高比电阻粉尘的收尘效率,依据非稳态静电收集理论,对影响电除尘器粉尘收集性能各项因素的作用程度及机理进行了进一步研究。实验研究了粉尘收尘效率与不同比电阻粉尘的最优极间距、最优工作电压、粉尘层厚度和比电阻之间的相互关系。研究结果表明,随着极间距的增加,对应比收尘极面积,对于不同比电阻粉尘的收尘效率的增加幅度是不同的,其中高比电阻粉尘的收尘效率增加的趋势更加显著;粉尘比电阻越高,所对应的最优极间距越大,宽间距电除尘器对捕集高比电阻粉尘具有一定优越性;在最优极间距条件下,粉尘比电阻越高,其所对应的最优工作电压越小;相对于正常比电阻粉尘,随极板沉积粉尘层厚度的增加,高比电阻粉尘的最佳收尘效率所对应的最优工作电压升高幅度较大,而且最优工作电压所对应的收尘效率下降显著。随粉尘比电阻的增大,电除尘器收尘效率逐渐降低,特别是当粉尘比电阻大于1011Ω.cm后,粉尘收尘效率显著下降。研究结果与非稳态静电收尘理论提出的观点相吻合,有助于透彻理解电场结构和运行参数与粉尘收集性能的关系,特别是对于今后研发提高高比电阻粉尘收集性能的针对性技术措施具有指导作用。  相似文献   

20.
The removal efficiency of granular filters packed with lava rock and sand was studied for collection of airborne particles 0.05-2.5 microm in diameter. The effects of filter depth, packing wetness, grain size, and flow rate on collection efficiency were investigated. Two packing grain sizes (0.3 and 0.15 cm) were tested for flow rates of 1.2, 2.4, and 3.6 L/min, corresponding to empty bed residence times (equal to the bulk volume of the packing divided by the airflow rate) in the granular media of 60, 30, and 20 sec, respectively. The results showed that at 1.2 L/min, dry packing with grains 0.15 cm in diameter removed more than 80% (by number) of the particles. Particle collection efficiency decreased with increasing flow rate. Diffusion was identified as the predominant collection mechanism for ultrafine particles, while the larger particles in the accumulation mode of 0.7-2.5 microm were removed primarily by gravitational settling. For all packing depths and airflow rates, particle removal efficiency was generally higher on dry packing than on wet packing for particles smaller than 0.25 microm. The results suggest that development of biological filters for fine particles is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号