首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel.

The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane,and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst,while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

2.
负载型金催化剂用于室温下CO的消除   总被引:4,自引:0,他引:4  
从催化活性、抗潮湿、抗硫中毒、稳定性等方面考察了负载型金催化剂对于CO氧化反应的性能。筛选出的2-3催化剂可在-22℃下完全消除CO,并且在催化活性、抗潮湿、抗硫中毒、稳定性等方面具有现行催化剂无法比拟的优点。  相似文献   

3.
Six single-component fuels (isooctane, n-heptane, 1-hexene, cyclohexane, methyl-t-butyl ether (MTBE), and toluene) and a multicomponent tracer fuel were burned in a pulse flame combustor (PFC) and reacted over a three-way automotive catalyst. The composition of the raw, uncatalyzed PFC exhaust was characterized in Part I of this study. In Part II, we focus on the conversions of the individual exhaust HC species over the catalyst. In accord with previous studies, the order of reactivity observed for the various classes of HC species was: methane (least reactive) < saturated HC < aromatics < unsaturated HC (most reactive). These differences in catalytic reactivity led to increases in the relative concentrations of methane and some saturated hydrocarbons in the post catalyst exhaust, and corresponding decreases in the relative concentrations of aromatic and unsaturated hydrocarbons. Oxygenated organic compounds showed wide variability in catalytic reactivity depending on the specific compounds involved. Catalytic conversion of the air toxic, 1,3-butadiene, was essentially complete to within detection limits. Benzene and toluene appeared to have similar intrinsic catalytic reactivities. However, net conversion of benzene in most instances was significantly less than that of toluene owing to demethylation of toluene (to form benzene) occurring in parallel with benzene oxidation. Rich combustion of both isooctane and tracer fuel led to the production of methane by the catalyst, primarily from reactions of acetylene and small olefins.  相似文献   

4.
ABSTRACT

A colorimetxic method for the quantitative determination of CO by diffuse reflectance is described. This method is based on the reduction by CO of Mo (VI) from the indicator reagent molybdosilicic acid (H8Si[Mo2O7]6). The reduction yielded a change of color from clear yellow to dark green on white disk filter chart paper wetted with reagent indicator solution. The gaseous mixture containing CO was forced to pass through this chart paper, initiating the reaction. The intensity of the color produced, measured by diffuse reflectance, was proportional to the CO concentration present in exhaust gases in the range from 0.02 to 12% volume/volume (v/v). A 650-nm light-emitting diode was used as a light source. A two-fiber-optic system carried the light from the source to the detection system, which was composed of a photodiode, an amplification circuit, and a digital display. The method was applied with success in field measurements for automobiles in the Otto cycle. In a previous paper, this method was used for the quantitative determination of exhaust emissions from diesel-fueled vehicles.1  相似文献   

5.
ABSTRACT

Diesel particulate matter (PM) is a significant contributor to ambient air PM10 and PM2.5 particulate levels. In addition, recent literature argues that submicron diesel PM is a pulmonary health hazard. There is difficulty in attributing PM emissions to specific operating modes of a diesel engine, although it is acknowledged that PM production rises dramatically with load and that high PM emissions occur during rapid load increases on turbocharged engines. Snap-acceleration tests generally identify PM associated with rapid transient operating conditions, but not with high load. To quantify the origin of PM during transient engine operation, continuous opacity measurements have been made using a Wager 650CP full flow exhaust opacity meter. Opacity measurements were taken while the vehicles were operated over transient driving cycles on a chassis dynamometer using the West Virginia University (WVU) Transportable Heavy Duty Vehicle Emissions Testing Laboratories. Data were gathered from Detroit Diesel, Cummins, Caterpillar, and Navistar heavy-duty (HD) diesel engines. Driving cycles used were the Central Business District (CBD) cycle, the WVU 5-Peak Truck cycle, the WVU 5-Mile route, and the New York City Bus (NYCB) cycle. Continuous opacity measurements, integrated over the entire driving cycle, were compared to total integrated PM mass. In addition, the truck was subjected to repeat snap-acceleration tests, and PM was collected for a composite of these snap-acceleration tests. Additional data were obtained from a fleet of 1996 New Flyer buses in Flint, MI, equipped with electronically controlled Detroit Diesel Series 50 engines. Again, continuous opacity, regulated gaseous emissions, and PM were measured. The relationship between continuous carbon monoxide (CO) emissions and continuous opacity was noted. In identifying the level of PM emissions in transient diesel engine operation, it is suggested that CO emissions may prove to be a useful indicator and may be used to apportion total PM on a continuous basis over a transient cycle. The projected continuous PM data will prove valuable in future mobile source inventory prediction.  相似文献   

6.
7.
Abstract

The roadway is one of the most important microenvironments for human exposure to carbon monoxide (CO). To evaluate long-term changes in pollutant exposure due to in-transit activities, a mathematical model has been developed to predict average daily vehicular emissions on highways. By utilizing measurements that are specific for a given location and year (e.g., traffic counts, fleet composition), this model can predict emissions for a specific roadway during various time periods of interest, allowing examination of long-term trends in human exposure to CO. For an arterial highway in northern California, this model predicts that CO emissions should have declined by 58% between 1980 and 1991, which agrees fairly well with field measurements of human exposure taken along that roadway during those two years. An additional reduction of up to 60% in CO emissions is predicted to occur between 1991 and 2002, due solely to the continued replacement of older cars with newer, cleaner vehicles.  相似文献   

8.
The draft Technical Report on Air Quality Criteria for Carbon Monoxide shows thorough familiarity with the relevant toxicological studies. The authors selected materials for discussion very judiciously. They present the pertinent information in sufficient detail to permit an independent judgment of its significance, in most instances. The conclusions are firmly based on the information which is presented.  相似文献   

9.
Eleven new cars were driven around a 35 km route comprising heavily trafficked roads in and around London, and the concentrations of carbon monoxide inside and immediately outside the vehicles were continuously monitored. Average levels of CO between 12 and 60 parts per million were found inside the cars, and these levels were between 30 and 80% of the external concentrations. The internal levels varied according to external changes but the changes were greatly damped by the buffering effect of the ventilation system. Differences in internal CO levels were more marked between vehicles than for different runs in the same vehicle and were probably due to differences in the ventilation systems.

Blood carboxy-hemoglobin concentrations which would arise from the CO exposures were calculated. Published data suggest that carboxy-hemoglobin concentrations within the range found (1.5-3.0%) would not be expected to produce an adverse effect on health; there are conflicting views as to whether driving performance would be impaired.  相似文献   

10.
This paper describes the results of a measurement and modeling study of carbon monoxide (CO) concentrations In the proximity of intersections. Analysis for model performance of paired observed and predicted CO concentrations are presented. Two methodologies of pollutant prediction were used: the Intersection Midblock Model (IMM) and a statistical multiple linear regression. The results showed that both methods underpredicted frequently and dispensed results that were site specific. In addition, correlations of IMM predicted concentrations to observed concentrations were poor (typically r2 values <0.25). Various explanations for this observation are proposed. The statistical approach exhibited an improved accuracy over that of IMM. However, some of the independent variables used might be difficult to obtain as a routine measurement, and use of a one or two independent parameter model yielded adjusted R2 values comparable to the r2 values observed with IMM. Based on these results, an Intersection model applicable under a wide range of conditions of traffic, meteorology, and geometry is not available. Research Is needed to develop one, since its use would often be called on in the development of air quality sections of Environmental Assessments or Environmental Impact Statements.  相似文献   

11.
ABSTRACT

Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

IMPLICATIONS There has been an increased usage of stationary diesel engines, especially backup power generators to meet the growing energy demand. Biodiesel derived from waste cooking oil has received increasing attention as an alternative fuel. However, data are only sparsely available in the literature on particulate emissions from stationary engines, fueled with blends of diesel and biodiesel. This study provides insights into the influence of waste-cooking-oil-derived biodiesel on engine performance and the particulate emissions from a stationary engine. The results of the study form a scientific basis to evaluate the impact of biodiesel emissions on the environment and human health.  相似文献   

12.
The body of information presented in this paper is directed toward those individuals involved with handling hazardous materials, whether in actual use of such chemicals, or in monitoring atmospheric emissions. Although specifically relating experience in the design and testing of phosgene emission control equipment, it attempts to establish general guidelines for effectively dealing with emissions of hazardous materials. An approach for handling chemical pollutants having no established air quality emission standards is developed. The paper presents a technique for establishing process emissions at acceptably low levels to insure the health and safety of the general population as well as that of the process workers themselves. Methods, suitable for measuring phosgene at these low levels, have been investigated, and problems associated with such an investigation are discussed. While complete theoretical scrubber design criteria are beyond the scope of this paper, many of the "real world" problems which affected scrubber performance are presented. Finally, the practical aspects of process emissions control are illustrated by actual results from the system test.  相似文献   

13.
It always has been assumed that only a small amount of CO will be produced by a gas stove when mixture of air and gas are well adjusted and that that small amount will be dissipated by the home’s ventilation and by a combination of a fan and hood over the stove. However, preparation of meals may substantially increase CO. The immediate air supply may be progressively diminished when more than one burner is used and air supply may be partially cut off by vessels placed over the gas flame. The purpose of this investigation was to determine the amount of CO that may be expected to be produced during normal cooking. The experiment measured CO levels, using multiple burners with and without cooking vessels, and the rate of dissipation of the accumulated gas under various conditions of ventilation.  相似文献   

14.
ABSTRACT

A series of twelve intensively monitored 1-hr CO dispersion studies were conducted near Davis, CA, in winter 1996. The experimental equipment included twelve CO sampling ports at elevations up to 50 m, three sonic anemometers, a tethersonde station, aircraft measurements of wind and temperature profile aloft, and a variety of conventional meteorological equipment. The study was designed to explore the role of vehicular exhaust buoyancy during worst-case meteorological conditions, such as low winds oriented in near-parallel alignment with the road during a surface-based nocturnal inversion. From the study, field estimates of the CO emission factor (EF) from a California vehicle fleet were computed using two different methods. The analysis suggests that the CT-EMFAC/ EMFAC (EMission FACtor) models currently used to conduct federal conformity modeling significantly overpredict CO emissions for high-speed, free-flowing traffic on California highways.  相似文献   

15.
Abstract

The concentrations of carbon monoxide (CO) and other gases were measured in the emissions from solid waste degradation under aerobic and anaerobic conditions during laboratory and field investigations. The emissions were measured as room temperature headspace gas concentrations in reactors of 1, 30, and 150 L, as well as sucked gas concentrations from windrow composting piles and a biocell, under field conditions. The aerobic composting laboratory experiments consisted of treatments with and without lime. The CO concentrations measured during anaerobic conditions varied from 0 to 3000 ppm, the average being 23 ppm, increasing to 133 ppm when methane (CH4) concentrations were low. The mean/maximum CO concentrations during the aerobic degradation in the 2-L reactor were 101/194 ppm without lime, 486/2022 ppm with lime, and 275/980 ppm in the 150-L reactors. The presence of CO during the aerobic composting followed a rapid decline in O2 concentrations Significantly higher CO concentrations were obtained when the aerobic degradation was amended with lime, probably because of a more extreme depletion of oxygen. The mean/maximum CO concentrations under field conditions during aerobic composting were 95/1000 ppm. The CO concentrations from the anaerobic biocell varied from 20 to 160 ppm. The hydrogen sulfide concentrations reached almost 1200 ppm during the anaerobic degradation and 67 ppm during the composting experiments. There is a positive correlation between the CO and hydrogen sulfide concentrations measured during the anaerobic degradation experiments.  相似文献   

16.
17.
As part of the Integrated Air Cancer Project, the U.S. Environmental Protection Agency (EPA) has conducted field emission measurement programs in Raleigh, North Carolina, and Boise, Idaho, to identify the potential mutagenic Impact of residential wood burning and motor vehicles on ambient and indoor air. These studies included the collection of emission samples from chimneys serving wood burning appliances. Parallel projects were undertaken in Instrumented woodstove test laboratories to quantify woodstove emissions during operations typical of in-house usage but under more controlled conditions.

Three woodstoves were operated In test laboratories over a range of burnrates, burning eastern oak, southern yellow pine, or western white pine. Two conventional stoves were tested at an altitude of 90 m. One of the conventional stoves and a catalytic stove were tested at an altitude of 825 m.

Decreasing burnrate increased total paniculate emissions from the conventional stoves while the catalytic stove's total particulate emissions were unaffected. There was no correlation of total particulate emissions with altitude whereas total polynuclear aromatic hydrocarbon (PAH) emissions were higher at the lower altitude. Mutagenicity of the catalytic stove emissions was higher than emissions from the conventional stove. Emissions from burning pine were more mutagenic than emissions from oak.  相似文献   

18.
Abstract

This paper presents an experimental study of calcium bisulfite oxidation, a key step in the wet limestone-gypsum flue gas desulfurization (FGD) process, in the presence of catalysts (e.g., cobalt ions and a mixture of ferrous and cobalt ions). A fundamental approach is followed, by reproducing a simplified synthetic FGD liquor in which both catalyst ions, alone or mixed together, are present. A laboratory-scale apparatus is used, in which sulfurous solution is contacted with a gas phase at a fixed oxygen partial pressure (21.3 kPa) and at different temperature levels (25, 45, and 55 °C). The experimental results are analyzed using the theory of gas-liquid mass transfer with chemical reaction, showing that the slow reaction regime is explored and the transition from the kinetic to the diffusional subregime is identified. The experimental results are compared with those obtained in the presence of other catalytic species (manganese and ferrous ions), showing that cobalt is effective in catalyzing the oxidation of calcium bisulfite to sulfate, but to a minor extent with respect to iron and manganese.  相似文献   

19.
ABSTRACT

The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed.

Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 × 109 kg NOx and 1.2 x 108 kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including  相似文献   

20.
A numerical model, which can be used to study the dispersion of carbon monoxide emissions from automobiles traveling on a highway, is described. The model Is based upon the semi-empirical equation of turbulent diffusion. The performance of the model has been tested using carbon monoxide concentration data obtained near highway 401 in the city of Toronto, Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号