首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
2.
Abstract

Odor intensity reveals a dose-effect relationship between inhaled odor and perceived odor sensation by the receptors, while odor concentration reflects the odor strength at the emission sources. The study reports significant improvements in experimental procedures in establishing the odor concentration-intensity (OCI) relationships using a newly developed digital olfactometer. The improvements in experimental procedures have been made to meet the requirements of both the VDI guideline 3882.1 and the European standard (EN13725). Several areas which could affect the reliability of the results have been identified in some similar studies. The latest digital olfactometer was calibrated automatically to ensure accurate and repeatable dilution ratios. Cross contamination has been eliminated through the instrument design and extensive cleaning procedures, making random presentation possible. Stringent panelist screening and continuous performance monitoring ensures consistent sensitivity of the panel. The extension of odor intensity category to temperature sensation gives a reference to assist judgments of perceived odor sensation. The Dyna-Scent calculation method has simplified odor intensity calculation and can be applied to many odor samples. A total of 38 odor samples from three alumina refinery sites and two sewage treatment plants were collected for analysis. The results have confirmed the efficiency of the olfactometer. Distinct Odor Concentrations (DOCs) were calculated for each sample using both VDI and DynaScent methods. A student t test on two major odor types confirmed that there are no significant differences between two methods. The study has shown the DOCs for refinery odor and wastewater odor are in the range of 3.8-15.4 and 4.2-15.6 odor unit (OU)/m3 respectively. The study demonstrated that the improvements are critical in achieving reliable odor intensity measurement. This can lead to the setup of quantitative odor impact criteria for different industries and sites.  相似文献   

3.
The reproducibility of odor thresholds determined by forced-choice dynamic triangle olfactometry was studied employing panels of 23- 45 subjects who tested 12 odorants, with four replications for one (1-butanol). Depending on the selection of panelists, their number, and between-session differences in olfactometer variables, the standard deviation of log(threshold) values ranged from 0.12 (same session, different panels of nine) to 0.37 (different sessions, different panels of nine).

Among the demographic factors, only age was found significant; those below age of 30 were 1.6-3 times more sensitive than the older group. No systematic sensitivity difference was found between females and males, and nonsmokers and smokers.

Suspicion has been raised in the literature that the method used here, ASTM E679, yields biased results. It is shown for panels of 6-45 members that such biases are inconsequential if the range of concentration presented to the panelists is large enough, and the group threshold is well within that range. The Hall-Ellis method of calculation may have a slight advantage for panels of less than eight subjects, but such small panels are not advisable because of their high variability. The method based on the detectability index exhibited more scatter and would need an impracticaliy large number of measurements.  相似文献   

4.
ABSTRACT

Intensity and threshold dilution ratio are two important indices for odor control of swine buildings. Although odor threshold dilution ratio is a widely used index to describe an odor, it should be related to intensity to be more useful. A method was proposed to measure both indices simultaneously by using a dynamic forced-choice olfacto-meter. Four air samples were taken from each of four swine rooms including farrowing, finisher, gestation, and nursery. A panel of eight people was used to evaluate odor intensity. Odor threshold dilution ratios were calculated according to the American Society for Testing and Materials (ASTM) Standard Practice E679-91 to be 333, 424, 25, and 221 for samples collected from farrowing, finisher, gestation, and nursery rooms, respectively. After the samples were diluted 14.7 times, the odor intensities were evaluated to be 3.79, 3.46, 0.48, and 4.0 for the above-mentioned rooms, respectively. The data collected were used to develop a mathematical model.  相似文献   

5.
6.
ABSTRACT

The possibility of using electronic noses (ENs) to measure odor intensity was investigated in this study. Two commercially available ENs, an Aromascan A32S with conducting polymer sensors and an Alpha M.O.S. Fox 3000 with metal oxide sensors, as well as an experimental EN made of Taguchi-type tin oxide sensors, were used in the experiments. Odor intensity measurement by sensory analysis and EN sensor response were obtained for samples of odorous compounds (n-butanol, CH3COCH3, and C2H5SH) and for binary mixtures of odorous compounds (n-butanol and CH3COCH3). Linear regression analysis and artificial neural networks (ANN) were used to establish a relationship between odor intensity and EN sensor responses.

The results suggest that large differences in sensor response to samples of equivalent odor intensity exist and that sensitivity to odorous compounds varies according to the type of sensors. A linear relationship between odor intensity and averaged sensor response was found to be appropriate for the EN based on conducting polymer sensors with a correlation coefficient (r) of 0.94 between calculated and measured odor intensity. However, the linear regression approach was shown to be inadequate for both ENs, which included metal oxide-type sensors. Very strong correlation (r = 0.99) between measured odor intensity and calculated odor intensity using the ANN developed were obtained for both commercial ENs. A weaker correlation (r = 0.84) was found for the experimental instrument, suggesting an insufficient number of sensors and/or not enough diversity in sensor responses. The results demonstrated the ability of ENs to measure odor intensity associated with simple mixtures of odorous compounds and suggest that ANN are appropriate to model the relationship between odor intensity measurement and EN sensor response.  相似文献   

7.
For many odorous industrial gases, odor detecrability often involves such low concentrations that the sampling time factor makes physical-chemical methods of analysis impractical. However, a sensory detection method based on signal detection theory has shown itself to be well suited for such studies even at levels near the absolute threshold. Experiments undertaken to assess the method are described.  相似文献   

8.
9.
Policies on economic use of natural resources require considerations to social and cultural values. In order to make those concrete in a planning context, this paper aims to interpret social and cultural criteria, identify indicators, match these with verifier variables and visualize them on maps. Indicators were selected from a review of scholarly work and natural resource policies, and then matched with verifier variables available for Sweden’s 290 municipalities. Maps of the spatial distribution of four social and four cultural verifier variables were then produced. Consideration of social and cultural values in the studied natural resource use sectors was limited. The spatial distribution of the verifier variables exhibited a general divide between northwest and south Sweden, and regional rural and urban areas. We conclude that it is possible to identify indicators and match them with verifier variables to support inclusion of social and cultural values in planning.  相似文献   

10.
Comparison of black carbon (BC) measurements obtained by two methods was performed for aerosols samples collected on Whatman 41 (W-41) filters, using an optical method (Magee Scientific Optical Transmissometer Model OT-21) and a thermal-optical method (Sunset Laboratory Thermal-optical analyzer). Samples were collected from four sites: Albany (a small urban site, NY), Antalya (coastal site, Turkey), Whiteface Mountain (remote site, NY) and Mayville (rural site, NY). At Albany, comparison between the two methods showed excellent agreement; a least-squares regression line yielded a slope of 1.02, and r2 = 0.88. Similar comparisons at Antalya (slope of 1.02, r2 = 0.5) and Whiteface Mountain (slope of 0.92 and r2 = 0.58) also gave very good relationship. At Mayville, the relationship between the two methods yielded somewhat lower regression: a slope of 0.75, and r2 = 0.44. The data from the four locations, when plotted together, yielded an excellent agreement: a slope of 0.91, and r2 of 0.84. Based on our measurements, it appears that optical measurement using the OT-21 can be successfully applied to determination of BC in W-41 filters. However, because of the variability in the chemical composition of BC aerosol at different locations, it is suggested that the calibration of OT-21 when using W-41 filters should be performed with a statistically significant numbers of samples for specific sites.  相似文献   

11.
12.
13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号