首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The emissions of volatile sulfur-containing compounds from 13 flue gas desulfurization (FGD) sludge field storage sites have been characterized. Sulfur gas emissions from the sludge surfaces were determined by measuring the sulfur gas enhancement of sulfur-free sweep air passing through a dynamic emission flux chamber placed over selected sampling sites. Samples of the enclosure sweep air were cryogenically concentrated in surface-deactivated Pyrex “U” traps. Analyses were conducted by wall-coated, open-tubular, capillary column, cyrogenic gas chromatography using a sulfur-selective, flame photometric detector. Several major variables associated with FGD sludge production processes were examined in relation to the measured range and variations in sulfur fluxes including: (a) the sulfur dioxide scrubbing reagent used, (b) sludge sulfite oxidation, (c) “unfixed” or “fixed” FGD sludge, and (d) ponding or landfill storage. The composition and concentration of the measured sulfur gas emissions were found to vary with the type of sludge, the effectiveness of rainwater drainage from the landfill surface, the method of impoundment, and the sulfate/sulfite ratio of the sludge. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide were identified in varying concentrations and ratios in the FGD sludge emissions. In addition, up to four unidentified organo- sulfur compounds were found in the emissions from four FGD sludges. The sulfur flux from one FGD storage pond was analyzed by gas chromatography-single ion monitoring mass spectrometry. In addition to the four identified sulfur compounds, this flux contained large concentrations of benzene, toluene, and α-pinene. The measured, total sulfur emissions ranged from less than 0.01 to nearly 0.3 kg of sulfur per day for an equivalent 100 acre (40.5 hectare) sludge impoundment surface.  相似文献   

2.
This paper presents initial measurement data on the emission of volatile, reduced sulfur-containing gases from flue gas desulfurization (FGD) storage ponds. Several different types of FGD stored sludges were studied including lime, limestone, and mixtures of fly ash and lime or limestone residues, some of which had been chemically stabilized. The volatile sulfur gas emissions were cryogenically concentrated and determined by wall-coated, open-tubular capillary column gas chromatography using a flame photometric detector. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and an unusual, unidentified sulfur-containing compound were found in the gaseous pond flux. Benzene, toluene, and α-pinene were also identified by gas chromatography-single ion monitoring mass spectrometry. The total reduced sulfur gas emission from a 100 acre pond approximated 2.0 kg day?1 (as sulfur).  相似文献   

3.
The cost effective benefits of yielding a flue gas desulfurization (FGD) sludge predominantly composed of CaSO4·2H2O, have been previously established. The recovery of this material as FGD by-product gypsum has been demonstrated abroad. Recently U.S. wallboard manufacturers have recognized the viability of this recovery practice. Such techno-economic decision making variables as a) by-product specification, b) transportation costs, and c) location of suitable FGD systems enable the recognition of FGD by-product recovery. Recent investigations of resultant solids content and chloride washing reflect the technical possibility of delivering a suitable product. Commercial and economic factors favor recovery based upon rising disposal and transportation costs. Existing and near term proposed systems surface the technical and commercial problems faced by utilities considering recovery.

Generation of an oxidized FGD sludge consisting of 90+% CaSO4·2H2O and dewatered to 80+% solids is technically achievable by air sparging within the FGD system. Although the product is suitable for land disposal, electric power utilities should consider and evaluate by-product recovery. U.S. wallboard manufacturers have established technical criteria for FGD by-product gypsum. Percent CaSO4·2H2O, final solids content, particle size, and chloride content are primarily technical parameters. Technology exists within the FGD industry to satisfy these criteria and results are discussed.

Economic factors comparing mining costs, transportation costs, and disposal costs are developed for specific utility projects. Such comparison established generalized financial criteria for a given utility to develop the economic reasonableness of considering FGD byproduct recovery.

End product user perspectives are presented providing electric utilities with a realistic appreciation for by-product recovery potential. Location of existing wallboard plants highlight potential recovery regions. Quality control problems are discussed in terms of generating a by-product rather than a disposable material.  相似文献   

4.
5.

Phosphorus recovery from greenhouse wastewater, using precipitation-crystallization, was conducted under three levels of calcium concentration, 304 mg/L (7.6 mmol/L), 384 mg/L (9.6 mmol/L), and 480 mg/L (12 mmol/L), and also with additions of ammonium and magnesium into the wastewater. Jar test results confirmed high phosphate removal, with more than 90% of the removal achieved with a pH as low as 7.7. Under the low calcium concentration, ammonium addition affected the chemical reactions at pH lower than 8.0, where struvite was produced; when the pH was raised to 8.8, other calcium compounds dominated the precipitation. Under the medium calcium concentration, ammonium and magnesium addition helped struvite precipitation in the low pH range. Hydroxyapatite (HAP) was the main product. Under the high calcium concentration, ammonium addition showed no effects on the precipitation.  相似文献   

6.
Abstract

Products of a power plant flue gas desulfurization scrubber are discharged into a pond as sludge consisting of calcite (initial δ13C 3.2–3.8‰), gypsum (initial δ34S 7.6–8.6‰), and aqueous solution. Reducing conditions exist below a boundary that appears to move vertically as a function of changes in pond water level. Under reducing conditions, bacteria partially reduce aqueous sulfate to low-δ34S sulfide, consuming organic carbon and generating low-δ13C bicarbonate. Under oxidizing conditions, sulfide is converted to sulfate, leading to calcite dissolution, gypsum precipitation, and isotopic re-equilibration of remaining calcite with dissolved bicarbonate near the pond surface. The gypsum has δ34S near 6‰, and calcite has δ13C as low as -1.7‰; the changes from initial values correspond to predictions based on isotopic balance and reaction stoichiometry. The pond largely contains the products of bacterial reduction. After the pond is abandoned, these products may adversely affect attempts to revegetate the site. Future bacterial reduction may be best controlled by dewatering and limiting the supply of organic matter in percolating surface water.  相似文献   

7.
A combined approach of biological treatment, solids digestion and nutrient recovery was tested on dairy manure. A sequencing batch reactor (SBR) was operated in three modes, in order to optimize nutrient (nitrogen and phosphorus) removals. The highest average removal efficiencies of 91% for NH4-N, 59% for PO4-P and 80% for total chemical oxygen demand (COD) were achieved. Staining experiments suggested the coexistence of glycogen and phosphorus accumulating organisms. Anaerobic digestion of wasted bio-solids was able to produce a PO4-P concentration of 70 mgL?1 in the supernatant. A pilot-scale experiment, designed to recover phosphorus in the supernatant as struvite (magnesium ammonium phosphate), was able to remove 82% of soluble PO4-P.  相似文献   

8.
For seasite power plants using seawater for condenser cooling, Bechtel developed a new process to remove better than 90 percent of flue gas SO2 using seawater and lime. Tests demonstrate that marine life is not affected by the effluent from this unique scrubbing process; therefore, the aqueous effluent containing reacted products (gypsum) in solution at low concentration is suitable for discharge to the sea.  相似文献   

9.
喷射鼓泡法烟气脱硫工艺   总被引:2,自引:0,他引:2  
对以喷射鼓泡反应器为主设备,石灰石浆液为脱硫剂的湿法烟气脱硫工艺进行了实验研究,结果表明主要参数[烟气压降Δp、ф(液气)比、吸收液pH值、进气SO2浓度]对脱硫效率均有较大的影响。  相似文献   

10.
对锅炉烟气处理工艺进行了改造,运行结果表明,改造后的处理效果明显提高,解决了烟尘及SO2排放浓度的超标问题,实现了达标排放。  相似文献   

11.
Dry processes for controlling sulfur dioxide emissions by injecting sodium based sorbents in the ductwork ahead of a bag filter are effective and more simple alternatives to conventional FGD processes. This paper presents a fundamental kinetic model of the dry injection process. Experimental data from pilot scale tests are reported. The model is shown to be applicable to the dry injection process. However, further experimental work is recommended to get a better understanding of the reaction mechanisms.  相似文献   

12.
The body of information presented in this paper is directed to the operating personnel and process engineers employed in the power and recovery departments of a chemical pulping operation. The proper evaluation of the total analytical and sampling system (TASS), to be used in the determination of sulfur oxides is as important as a proper analytical and recording system (ARS). The presence of other sulfur gaseous compounds and particulates could greatly influence the results of the determination.

The analytical method employed determines sulfur dioxide and trioxide from an aliquot of the trapping solution, 3% hydrogen peroxide and 8 0% isopropyl alcohol respectively. The aliquot is titrated with barium perchlorate in the presence of Thorin indicator. The results of evaluating the method indicated negligible interference from the presence of hydrogen sulfide, mercaptans and nitrogen oxides. A blank correction of 15 parts per million (ppm) is recommended whenever 100 ppm of hydrogen sulfide or more are simultaneously present in the gas stream. Particulaies are shown to interfere either by addition or subtraction. Sulfate particulates that will add to the determination must be removed, but in doing so, care must be exerted to avoid surface-contacting conditions that promote reaction between carbonates and the sulfur oxides. The integrated method of sampling and analysis will permit determinations from a flue gas with sulfur oxides concentrations of 30 ppm and above. The relative standard deviation improves from 10% at 100 ppm SO2 to 2.6% at 1000 ppm SO2. In both cases, sulfides were present.  相似文献   

13.
Several designated hazardous wastes (metal plating waste, oil sludge, heavy metal processing sludge) were studied relative to potential detoxification using dry calcium based FGD sludges. The FGD waste was generated from a pilot scale system which utilized slurried lime, a spray drier, and a bag filter. Following detailed physical and chemical identification of the raw FGD and hazardous wastes, various mixtures were prepared and cured. In all cases, even with the organic sludge, a rigid structural material evolved due to the pozzolanic reactions occurring from the wetted dry FGD waste. Structural characteristics, physical character, and chemical leaching effects were evaluated. The solids were leached via both EPA-RCRA and ASTM proposed leaching procedures. In all cases, the hazardous constituents were retained and not leached. Finally, the feasibility of using dry FGD wastes as fixating materials is discussed.  相似文献   

14.
针对冲天炉熔炼过程中产生污染物的特性,提出了一种净化效率高且经济可行的冲天炉烟气多级复合除尘净化技术。  相似文献   

15.
Pilot plant (0.1 MW) tests and utility boiler full scale demonstration (194 MW) of byproduct organic dibasic acids (DBA) as buffer additives to limestone scrubbers have shown performance improvements equivalent to those achieved by the addition of pure adipic acid. Both SO2 removal efficiency and limestone utilization increased, and no significant operating problems were observed with three of the four DBA tested. Chemical and biological evaluations of scrubber samples taken during the DBA testing indicated no detectable tOxicity or mutagenicity, and no significant environmental impact is expected as a result of DBA addition. Economic estimates indicate that substitution of DBA for pure adipic acid as a buffer additive will result in additive cost savings of 30 % or greater.  相似文献   

16.
ABSTRACT

Coal-fired electricity-generating plants may use SO2 scrubbers to meet the requirements of Phase II of the Acid Rain SO2 Reduction Program. Additionally, the use of scrubbers can result in reduction of Hg and other emissions from combustion sources. It is timely, therefore, to examine the current status of SO2 scrubbing technologies. This paper presents a comprehensive review of the state of the art in flue gas desulfurization (FGD) technologies for coal-fired boilers.

Data on worldwide FGD applications reveal that wet FGD technologies, and specifically wet limestone FGD, have been predominantly selected over other FGD technologies. However, lime spray drying (LSD) is being used at the majority of the plants employing dry FGD technologies. Additional review of the U.S. FGD technology applications that began operation in 1991 through 1995 reveals that FGD processes of choice recently in the United States have been wet limestone FGD, magnesium-enhanced lime (MEL), and LSD. Further, of the wet limestone processes, limestone forced oxidation (LSFO) has been used most often in recent applications.

The SO2 removal performance of scrubbers has been reviewed. Data reflect that most wet limestone and LSD installations appear to be capable of ~90% SO2 removal. Advanced, state-of-the-art wet scrubbers can provide SO2 removal in excess of 95%.

Costs associated with state-of-the-art applications of LSFO, MEL, and LSD technologies have been analyzed with appropriate cost models. Analyses indicate that the capital cost of an LSD system is lower than those of same capacity LSFO and MEL systems, reflective of the relatively less complex hardware used in LSD. Analyses also reflect that, based on total annualized cost and SO2 removal requirements: (1) plants up to ~250 MWe in size and firing low- to medium-sulfur coals (i.e., coals with a sulfur content of 2% or lower) may use LSD; and (2) plants larger than 250 MWe and firing medium- to high-sulfur coals (i.e., coals with a sulfur content of 2% or higher) may use either LSFO or MEL.  相似文献   

17.
Fourteen sulfur and/or sulfuric acid producing regenerate FGD processes were discussed at the 1974 FGD Symposium in Atlanta. During the period elapsed since then, considerable status change has occurred on many of these regenerable processes. Other regenerable processes which were not as well known during 1974 have surfaced in 1975. The problems of obtaining reducing gases (hydrogen sulfide, carbon monoxide, and hydrogen) for the reduction of sulfur dioxide product streams to elemental sulfur have become severe due to shortages of natural gas or other petroleum based feedstock. A new sulfur producing process which employs CO and H2 directly (rather than the H2S required for liquid and vapor base Claus reactions) is gaining attention. This paper discusses briefly: (1) the announced status of the many regenerable FGD processes, (2) the problem of reductant gas supply, and (3) the effect on FGD processes of using coal based reducing gas instead of reformed natural gas.  相似文献   

18.
19.
The successful, reliable operation of a power plant flue gas desulfurization (FGD) system depends largely on a good program of maintenance. Identifying the FGD equipment that is most critical to an FGD system’s overall reliability or its ability to meet emission regulations plays an important role in determining the extent of a maintenance program for a particular site. FGD maintenance programs vary considerably, depending on site-specific requirements and the support of plant owners. Many owners are reluctant to spend money on FGD maintenance because an FGD system is a nonproductive part of a power plant; however, a good maintenance program can result in longer equipment life, improved equipment performance, increased system availability, better safety, and lower operating costs. This paper uses wet and dry lime FGD systems to illustrate the advantages of good maintenance and the consequences of poor maintenance. Examples of specific tasks for preventive, scheduled, planned, and emergency maintenance are described. Also, because of the importance of FGD maintenance personnel, a section on organization and training is included.  相似文献   

20.
The removal of SO2 with atomization of a slaked lime slurry and supplemental injection of gaseous NH3 were tested in a conventional spray dryer/baghouse system for SO2 concentrations of 2000 ppm and 3000 ppm and a 30° F approach to saturation. Results at 3000 ppm of SO2 showed an average SO2 removal efficiency of 90.3 percent at a combined stoichiometric ratio of 0.95-1.10 and an average overall sorbent utilization of 91.6 percent. The overall molal ratio of NH3/SO2 reaction was found to be 2:1 under the test conditions Particle size analyses, and EP toxicity tests were conducted on the products of the reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号