首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The emissions of volatile sulfur-containing compounds from 13 flue gas desulfurization (FGD) sludge field storage sites have been characterized. Sulfur gas emissions from the sludge surfaces were determined by measuring the sulfur gas enhancement of sulfur-free sweep air passing through a dynamic emission flux chamber placed over selected sampling sites. Samples of the enclosure sweep air were cryogenically concentrated in surface-deactivated Pyrex “U” traps. Analyses were conducted by wall-coated, open-tubular, capillary column, cyrogenic gas chromatography using a sulfur-selective, flame photometric detector. Several major variables associated with FGD sludge production processes were examined in relation to the measured range and variations in sulfur fluxes including: (a) the sulfur dioxide scrubbing reagent used, (b) sludge sulfite oxidation, (c) “unfixed” or “fixed” FGD sludge, and (d) ponding or landfill storage. The composition and concentration of the measured sulfur gas emissions were found to vary with the type of sludge, the effectiveness of rainwater drainage from the landfill surface, the method of impoundment, and the sulfate/sulfite ratio of the sludge. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide were identified in varying concentrations and ratios in the FGD sludge emissions. In addition, up to four unidentified organo- sulfur compounds were found in the emissions from four FGD sludges. The sulfur flux from one FGD storage pond was analyzed by gas chromatography-single ion monitoring mass spectrometry. In addition to the four identified sulfur compounds, this flux contained large concentrations of benzene, toluene, and α-pinene. The measured, total sulfur emissions ranged from less than 0.01 to nearly 0.3 kg of sulfur per day for an equivalent 100 acre (40.5 hectare) sludge impoundment surface.  相似文献   

2.
A computerized simulation model has been developed to compute energy requirements of a limestone slurry flue gas desulfurization (FGD) system as a function of FGD system design parameters, power plant characteristics, coal properties, and sulfur dioxide emission regulation. Results are illustrated for a "base case" plant of 500 MW, burning 3.5% sulfur coal, meeting the federal new source performance standard of 1.2 lb SO2/106 Btu. The flue gas is cleaned by an electrostatic precipitator followed by a limestone FGD system with a TCA scrubbing vessel and an optimized in-line steam reheater. The total FGD system energy requirement for this case was found to be 3.4% of the total energy input to the boiler. Sensitivity analyses were then performed in which the nominal values of ten system parameters were individually varied. This caused the total FGD system energy requirement to vary between 2.5 % and 6.1 % of the gross plant output for the range of parameters tested. The most sensitive parameters were found to be scrubbing slurry pH, which affects pumping requirements, and stack gas exit temperature, which affects reheat requirements. In all cases, FGD energy requirements were minimized when the SO2 emission standard was met by partially bypassing the scrubber. In light of the recent Clean Air Act Amendments this option may not be feasible in the future.  相似文献   

3.
ABSTRACT

Coal-fired electricity-generating plants may use SO2 scrubbers to meet the requirements of Phase II of the Acid Rain SO2 Reduction Program. Additionally, the use of scrubbers can result in reduction of Hg and other emissions from combustion sources. It is timely, therefore, to examine the current status of SO2 scrubbing technologies. This paper presents a comprehensive review of the state of the art in flue gas desulfurization (FGD) technologies for coal-fired boilers.

Data on worldwide FGD applications reveal that wet FGD technologies, and specifically wet limestone FGD, have been predominantly selected over other FGD technologies. However, lime spray drying (LSD) is being used at the majority of the plants employing dry FGD technologies. Additional review of the U.S. FGD technology applications that began operation in 1991 through 1995 reveals that FGD processes of choice recently in the United States have been wet limestone FGD, magnesium-enhanced lime (MEL), and LSD. Further, of the wet limestone processes, limestone forced oxidation (LSFO) has been used most often in recent applications.

The SO2 removal performance of scrubbers has been reviewed. Data reflect that most wet limestone and LSD installations appear to be capable of ~90% SO2 removal. Advanced, state-of-the-art wet scrubbers can provide SO2 removal in excess of 95%.

Costs associated with state-of-the-art applications of LSFO, MEL, and LSD technologies have been analyzed with appropriate cost models. Analyses indicate that the capital cost of an LSD system is lower than those of same capacity LSFO and MEL systems, reflective of the relatively less complex hardware used in LSD. Analyses also reflect that, based on total annualized cost and SO2 removal requirements: (1) plants up to ~250 MWe in size and firing low- to medium-sulfur coals (i.e., coals with a sulfur content of 2% or lower) may use LSD; and (2) plants larger than 250 MWe and firing medium- to high-sulfur coals (i.e., coals with a sulfur content of 2% or higher) may use either LSFO or MEL.  相似文献   

4.
Fourteen sulfur and/or sulfuric acid producing regenerate FGD processes were discussed at the 1974 FGD Symposium in Atlanta. During the period elapsed since then, considerable status change has occurred on many of these regenerable processes. Other regenerable processes which were not as well known during 1974 have surfaced in 1975. The problems of obtaining reducing gases (hydrogen sulfide, carbon monoxide, and hydrogen) for the reduction of sulfur dioxide product streams to elemental sulfur have become severe due to shortages of natural gas or other petroleum based feedstock. A new sulfur producing process which employs CO and H2 directly (rather than the H2S required for liquid and vapor base Claus reactions) is gaining attention. This paper discusses briefly: (1) the announced status of the many regenerable FGD processes, (2) the problem of reductant gas supply, and (3) the effect on FGD processes of using coal based reducing gas instead of reformed natural gas.  相似文献   

5.
Flue gas desulfurization: the state of the art   总被引:7,自引:0,他引:7  
Coal-fired electricity-generating plants may use SO2 scrubbers to meet the requirements of Phase II of the Acid Rain SO2 Reduction Program. Additionally, the use of scrubbers can result in reduction of Hg and other emissions from combustion sources. It is timely, therefore, to examine the current status of SO2 scrubbing technologies. This paper presents a comprehensive review of the state of the art in flue gas desulfurization (FGD) technologies for coal-fired boilers. Data on worldwide FGD applications reveal that wet FGD technologies, and specifically wet limestone FGD, have been predominantly selected over other FGD technologies. However, lime spray drying (LSD) is being used at the majority of the plants employing dry FGD technologies. Additional review of the U.S. FGD technology applications that began operation in 1991 through 1995 reveals that FGD processes of choice recently in the United States have been wet limestone FGD, magnesium-enhanced lime (MEL), and LSD. Further, of the wet limestone processes, limestone forced oxidation (LSFO) has been used most often in recent applications. The SO2 removal performance of scrubbers has been reviewed. Data reflect that most wet limestone and LSD installations appear to be capable of approximately 90% SO2 removal. Advanced, state-of-the-art wet scrubbers can provide SO2 removal in excess of 95%. Costs associated with state-of-the-art applications of LSFO, MEL, and LSD technologies have been analyzed with appropriate cost models. Analyses indicate that the capital cost of an LSD system is lower than those of same capacity LSFO and MEL systems, reflective of the relatively less complex hardware used in LSD. Analyses also reflect that, based on total annualized cost and SO2 removal requirements: (1) plants up to approximately 250 MWe in size and firing low- to medium-sulfur coals (i.e., coals with a sulfur content of 2% or lower) may use LSD; and (2) plants larger than 250 MWe and firing medium- to high-sulfur coals (i.e., coals with a sulfur content of 2% or higher) may use either LSFO or MEL.  相似文献   

6.
The Clean Air Act Amendments of the early 1970s required coal burning utilities to reduce their emissions of sulfur dioxide. Lime or limestone based wet systems were employed for flue gas desulfurization (FGD). These systems reduced flue gas temperatures to below acid dew point conditions. Concerned about the prospect of ductwork exposed to a saturated, acid-rich environment, most utilities turned to stack gas reheat (SGR) to increase flue gas temperatures. By 1980, 82 percent of all FGD facilities employed SGR. Today there are about 130 FGD systems of which 101 employ some form of stack gas reheat.  相似文献   

7.
Abstract

As a result of the large limestone deposits available in Poland, the low cost of reagent acquisition for the large-scale technological use and relatively well-documented processes of flue gas desulfurization (FGD) technologies based on limestone sorbent slurry, wet scrubbing desulfurization is a method of choice in Poland for flue gas treatment in energy production facilities, including power plants and industrial systems. The efficiency of FGD using the above method depends on several technological and kinetic parameters, particularly on the pH value of the sorbent (i.e., ground limestone suspended in water). Consequently, many studies in Poland and abroad address the impact of various parameters on the pH value of the sorbent suspension, such as the average diameter of sorbent particles (related to the limestone pulverization degree), sorbent quality (in terms of pure calcium carbonate [CaCO3] content of the sorbent material), stoichiometric surfeit of CaCO3 in relation to sulfur dioxide (SO2) absorbed from flue gas circulating in the absorption node, time of absorption slurry retention in the absorber tank, chlorine ion concentration in sorbent slurry, and concentration of dissolved metal salts (Na, K, Mg, Fe, Al, and others). This study discusses the results of laboratory-scale tests conducted to establish the effect of the above parameters on the pH value of limestone slurry circulating in the SO2 absorption node. On the basis of the test results, a correlation equation was postulated to help maintain the desirable pH value at the design phase of the wet FGD process. The postulated equation displays good coincidence between calculated pH values and those obtained using laboratory measurements.  相似文献   

8.
Simplified algorithms are presented for estimating the cost of controlling sulfur dioxide (SO2) emissions from existing coal-fired power plants on a state-by-state basis. Results are obtained using the detailed Utility Control Strategy Model (UCSM) to calculate the Impacts of emission reductions ranging from approximately 30 percent to 90 percent of projected 1995 emissions for 18 different scenarios and 36 states. Scenarios include the use of two dry SO2 removal technologies (lime spray dryers and LIMB) as potential options for power plant retrofit, in addition to currently available emission control options including coal switching, coal cleaning and wet flue gas desulfurization (FGD). Technical assumptions relating to FGD system performance and the upgrading of existing cold-side electrostatic precipitators (ESP) for reduced sulfur levels are also analyzed, along with the effects of interest rates, coal prices, coal choice restrictions, plant lifetime, and plant operating levels. Results are summarized in the form of a 3-term polynomial equation for each state, giving total annualized SO2 control cost as a function of the total SO2 emissions reduction for each scenario. Excellent statistical fits to UCSM results are obtained for these generalized equations.  相似文献   

9.
In this presentation, adaptation of the lime/limestone process for flue gas desulfurization (FGD) is discussed and how this process can be adapted to applications in the nonferrous smelting industry such as fugitive gases, copper reverberatory furnace gases, lead sintering gases, molybdenum roasting plant tail gases, and other weak SO2 smelter gases. Different methods for particulate removal are also discussed with emphasis on how the particulate removal process can be integrated with the desulfurization process.  相似文献   

10.
The successful, reliable operation of a power plant flue gas desulfurization (FGD) system depends largely on a good program of maintenance. Identifying the FGD equipment that is most critical to an FGD system’s overall reliability or its ability to meet emission regulations plays an important role in determining the extent of a maintenance program for a particular site. FGD maintenance programs vary considerably, depending on site-specific requirements and the support of plant owners. Many owners are reluctant to spend money on FGD maintenance because an FGD system is a nonproductive part of a power plant; however, a good maintenance program can result in longer equipment life, improved equipment performance, increased system availability, better safety, and lower operating costs. This paper uses wet and dry lime FGD systems to illustrate the advantages of good maintenance and the consequences of poor maintenance. Examples of specific tasks for preventive, scheduled, planned, and emergency maintenance are described. Also, because of the importance of FGD maintenance personnel, a section on organization and training is included.  相似文献   

11.
This article introduces a predictive capability for Hg retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given mercury (Hg) speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO2) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections clearly signal that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO2 absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO2 capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O2 levels and the FGD temperature; weakly dependent on SO2 capture efficiency; and insensitive to HgCl2, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO3 levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg(O) but only for inlet O2 levels that are much lower than those in full-scale FGDs.  相似文献   

12.
Food wastes collected from typical urban residential communities were investigated for the emission of volatile organic sulfur compounds (VOSCs) during laboratory-controlled aerobic decomposition in an incubator for a period of 41 days. Emission of VOSCs from the food wastes totaled 409.9 mg kg?1 (dry weight), and dimethyl disulfide (DMDS), dimethyl sulfide (DMS), methyl 2-propenyl disulfide, carbonyl sulfide and methyl 1-propenyl sulfide were the five most abundant VOSCs, with shares of 75.5%, 13.5%, 4.8%, 2.2% and 1.3% in total 15 VOSCs released, respectively. The emission fluxes of major VOSCs were very low at the beginning (day 0). They peaked at days 2–4 and then decreased sharply until they leveled off after 10 days of incubation. For most VOSCs, over 95% of their emission occurred in the first 10 days. The time series of VOSC emission fluxes, as well as their significant correlation with internal food waste temperature (p < 0.05) during incubation, suggested that production of VOSC species was induced mainly by microbial activities during the aerobic decomposition instead of as inherited. Released VOSCs accounted for 5.3% of sulfur content in the food wastes, implying that during aerobic decomposition considerable portion of sulfur in food wastes would be released into the atmosphere as VOSCs, primarily as DMDS, which is very short-lived in the atmosphere and thus usually less considered in the sources and sinks of reduced sulfur gases.  相似文献   

13.
Accumulation of sulfur-containing compounds and their bacterial mediated reductions have led to the emission of pungent odors from stagnant water bodies. This study is focused on the contribution of inorganic sulfur compounds in the emission of hydrogen sulfide. The measured dissolved oxygen levels have demonstrated good negative correlations with the dissolved sulfide levels implying the oxygen deficiency is the key for the reduction of sulfate ion and sulfite ion to sulfide ion. Particularly, the dissolved molar fractions of sulfide from the total dissolved sulfur compounds (sulfates, sulfites and sulfides) have a very good correlation with the dissolved oxygen for the stagnant water bodies except the artificially aerated prawn farms. For the stagnant water bodies with significant correlations, linear regressions are reported for them to be utilized in estimating one component of the regression from the measurement of the other. The measured data were further utilized to estimate the levels of hydrogen sulfide gas. The pH of the water bodies has confined much of the dissolved sulfides in the form of bisulfide ion and they can be easily escaped to the atmosphere upon acidification due to industrial discharges and/or acidic precipitations. The estimated levels of hydrogen sulfide just above the water surface were plotted for the most polluted stagnant water body in Sri Lanka for the pH range of 5-10 and temperature range of 25-35 degrees C.  相似文献   

14.
Abstract

Products of a power plant flue gas desulfurization scrubber are discharged into a pond as sludge consisting of calcite (initial δ13C 3.2–3.8‰), gypsum (initial δ34S 7.6–8.6‰), and aqueous solution. Reducing conditions exist below a boundary that appears to move vertically as a function of changes in pond water level. Under reducing conditions, bacteria partially reduce aqueous sulfate to low-δ34S sulfide, consuming organic carbon and generating low-δ13C bicarbonate. Under oxidizing conditions, sulfide is converted to sulfate, leading to calcite dissolution, gypsum precipitation, and isotopic re-equilibration of remaining calcite with dissolved bicarbonate near the pond surface. The gypsum has δ34S near 6‰, and calcite has δ13C as low as -1.7‰; the changes from initial values correspond to predictions based on isotopic balance and reaction stoichiometry. The pond largely contains the products of bacterial reduction. After the pond is abandoned, these products may adversely affect attempts to revegetate the site. Future bacterial reduction may be best controlled by dewatering and limiting the supply of organic matter in percolating surface water.  相似文献   

15.
Data are presented for the first systematic measurements of biogenic sulfur gas flux from the major soil orders within the eastern and southeastern United States. Sulfur flux samples were collected and analyzed on-site during the fall of 1977, spring and summer of 1978 and summer of 1979. A total of 27 sampling locales in 17 states were examined. Eight additional sites were visited in 1980.

At some locales, two to four soils were examined, providing an even broader sampling of the soil orders. Three of the locales were revisited two or three times during the course of the study to establish the influence of seasonal climatology upon the measured emission rates and chemical composition of the sulfur flux mixtures.

The sulfur gas enhancement of sulfur-free sweep air passing through dynamic emission flux chambers placed over selected sampling areas was determined by combined cryogenic enrichment sampling and wall-coated, open tubular, capillary column, cryogenic gas chromatography (WCOT/GC) using a sulfur selective, flame photometric detector (FPD).

Sulfur gas mixtures varied with soil order, ambient temperature, insolation, soil moisture, cultivation, and vegetative cover. Statistical analyses indicated strong temperature and soil order relationships for sulfur emissions from soils.

Fluxes ranged from 0.001 g to 1940 g of total sulfur as S/m2/yr. The calculated mean annual sulfur flux, weighted by soil order, was 0.03 g S/m2/yr for the study land area, or 110,872 metric tons (mT). The estimated annual average sulfur flux increased from 65 mT per 6400 km2 for the land grids in the northernmost east-west grid tier to an average 1800 mT for the land grids in the southern Florida grid tiers.

This systematic sampling of major soils provides a much broader data base for estimating biogenic sulfur flux than previously reported for isolated intertidal sites, and presents the first sulfur flux estimates for inland soils which make up approximately 93% of the land of the eastern United States.  相似文献   

16.
Alvarez-Ayuso E  Querol X  Tomás A 《Chemosphere》2006,65(11):2009-2017
The fate of trace elements in a combustion power plant equipped with a wet limestone flue gas desulphurisation (FGD) installation was studied in order to evaluate its emission abatement capacity. With this aim representative samples of feed coal, boiler slag, fly ash, limestone, FGD gypsum and FGD process water and wastewater were analysed for major and trace elements using the following techniques: inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), ion chromatography (IC), ion selective electrode (ISE) and atomic absorption spectroscopy (AAS). Mass balances were established allowing to determine the element partitioning behaviour. It was found that, together with S, Hg, Cl, F, Se and As were those elements entering in the FGD plant primarily as gaseous species. The abatement capacity of the FGD plant for such elements offered values ranged from 96% to 100% for As, Cl, F, S and Se, and about 60% for Hg. The environmental characterisation of combustion by-products (boiler slag, fly ash and FGD gypsum) were also established according to the Council Decision 2003/33/EC on waste disposal. To this end, water leaching tests (EN-12457-4) were performed, analysing the elements with environmental concern by means of the aforementioned techniques. According to the leaching behaviour of combustion by-products studied, these could be disposed of in landfills for non-hazardous wastes.  相似文献   

17.
The absorption of hydrogen sulfide and methyl mercaptan by aqueous solutions of chlorine, sodium hydroxide, and chlorine plus sodium hydroxide was studied using a two-inch diameter absorption column packed with ¼ inch Intalox saddles. Absorption rates were noticeably affected by chemical reactions occurring in the aqueous chlorine and hydroxide media. These solutions were studied as a means of controlling sulfur-containing gas emissions from kraft paper mills. The absorption studies indicated that aqueous chlorine solutions at a pH above 12 were effective absorbents for hydrogen sulfide removal in absorption equipment designed to tolerate sulfur in suspension. The absorption of methyl mercaptan in aqueous chlorine solutions appeared to be impractical since dimethyl disulfide was apparently the only product formed and was stripped from the tower by the gas stream. Sodium hydroxide solution was an effective absorbent for both methyl mercaptan and hydrogen sulfide when hydroxide to sulfide or mercaptan feed ratios were greater than 1 or 1.8, respectively. The mercaptan absorption coefficient was approximately twice that for sulfide absorption.  相似文献   

18.
Volatile organic sulfur compounds in a stratified lake   总被引:3,自引:0,他引:3  
Hu H  Mylon SE  Benoit G 《Chemosphere》2007,67(5):911-919
Three volatile organic sulfur compounds (VOSCs), dimethyl sulfide (DMS), carbon disulfide (CS(2)), and dimethyl disulfide (DMDS), were detected in the stratified water column of a lake (Linsley Pond) in Connecticut. The compounds DMS and DMDS appeared in both the oxic and the anoxic portions of the water column, CS(2) was primarily found in anoxic hypolimnion. Algal metabolism and/or bacterial degradation of sulfur-containing amino acids or other organic materials are potential sources of VOSCs in the oxic lake water. Reactions of hydrogen sulfide with organic compounds and microbial degradation of organic matter may be responsible for the production of VOSCs in the anoxic lake water. The vertical distribution patterns of these three VOSCs varied from month to month in the summer, but the daily profiles obtained in one 5-day period in the summer displayed consistency. No clear diurnal pattern for any of the three VOSCs was observed. Based on observation that these VOSCs were not present in surface and near surface waters of Linsley Pond, freshwater inputs of reduced sulfur compounds to the atmosphere may be insignificant.  相似文献   

19.
It is important to establish a reliable regional emission inventory of sulfur as a function of time when assessing the possible effects of global change and acid rain. This study developed a database of annual estimates of national sulfur emissions from 1850 to 1990. A common methodology was applied across all years and countries allowing for global totals to be produced by adding estimates from all countries. The consistent approach facilitates the modification of the database and the observation of changes at national, regional, or global levels. The emission estimates were based on net production (i.e., production plus imports minus exports), sulfur content, and sulfur retention for each country's production activities. Because the emission estimates were based on the above considerations, our database offers an opportunity to independently compare our results with those estimates based on individual country estimates. Fine temporal resolution clearly shows emission changes associated with specific historical events (e.g., wars, depressions, etc.) on a regional, national, or global basis. The spatial pattern of emissions shows that the US, the USSR, and China were the main sulfur emitters (i.e., approximately 50% of the total) in the world in 1990. The USSR and the US appear to have stabilized their sulfur emissions over the past 20 yr, and the recent increases in global sulfur emissions are linked to the rapid increases in emissions from China. Sulfur emissions have been reduced in some cases by switching from high- to low-sulfur coals. Flue gas desulfurization (FGD) has apparently made important contributions to emission reductions in only a few countries, such as Germany.  相似文献   

20.
Sodium thiosulfate (Na2S2O3) has been tested in a pilot plant as an oxidation inhibitor in flue gas desulfurization by lime and limestone slurry scrubbing with and without MgO and adiplc acid additives. The effectiveness of thiosulfate is proportional to the inhibitor product, defined as the product of thiosulfate concentration (M), calcium concentration (M), and the moles of SO2 absorbed per hour per liter of hold tank volume. Gypsum saturation was less than 100 percent and scaling was eliminated when the inhibitor product exceeded 0.3 × 10?6(gmol/L)3/h. Thiosulfate was relatively more effective in systems with chlorides and less effective in systems promoted by MgO. An inhibitor product greater than 10?6(gmol/L)3/h significantly enhanced dewatering of solids from limestone scrubbing. SO2 removal and/or limestone utilization were increased in systems that started with less than 10 mM dissolved calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号