首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agricultural wastes from orchards, grain fields, and range lands are burned each year in California as the most practical means of ridding the land of these wastes. In order to determine the relative contribution of the burning of such material to photochemical air pollution, the effluent from 1 23 fires of known weights of range brush, both dry and green, barley and rice stubble, and prunings from various fruit and nut trees were monitored in a special tower which provided an open burning situation. Analyses were made for total hydrocarbon, expressed as C, by flame ionization detection, and for 24 individual hydrocarbons by gas chromatography, as well as for CO and CO2 by infrared spectroscopy. A few analyses were made for oxides of nitrogen. These data, coupled with temperature and airflow measurements, allowed calculations to be made on pounds of effluent per ton of material burned and demonstrated that the emissions from agricultural burning are much less than those from the automobile, a principal source of such emissions.  相似文献   

2.
The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in open areas to 70° or more for sites in very complex terrain. The analysis also showed some days with good forecast meteorology with absolute mean error in wind direction less than 30° when ClearSky correctly predicted PM2.5 surface concentrations at receptors affected by field burns. On several other days with similar levels of wind direction error the model did not predict apparent plume impacts. In most of these cases, there were no reported burns in the vicinity of the monitor and, thus, it appeared that other, non-reported burns were responsible for the apparent plume impact at the monitoring site. These cases do not provide information on the performance of the model, but rather indicate that further work is needed to identify all burns and to improve burn reports in an accurate and timely manner. There were also a number of days with wind direction errors exceeding 70° when the forecast system did not correctly predict plume behavior.  相似文献   

3.
For many years the City of Detroit was a flagrant violator of its own air pollution laws by the indiscriminate open burning of Dutch Elm diseased trees, brush and trunks. Cited for violation under the city’s air pollution control code as well as under threat of a private legal suit, the City administration approved a $250,000 expenditure for the design and installation of a unique six ton per hour brush and trunk burning incinerator plant. This plant was conceived by engineering personnel of the City Engineer’s office in consultation with engineering staff members of the Air Pollution Control Bureau. Information is provided on the basic plant layout and design, wet fly ash collector configuration, operating and maintenance experience, and recommended changes for any future similar installations. Stack emission test data are also reported. Due to the success of this plant, a similar plant is in the process of being constructed in another part of the city upon completion of which the City of Detroit will no longer be required to burn brush and trunk waste in open fires. The new plant has incorporated some design changes which should enable it to perform even more efficiently than the prototype unit and handle a wider variety of waste such as Christmas trees and wrecking waste. Because this plant is the first of its kind in the U. S. and the disposal of Dutch Elm diseased brush and trunks is a major problem in many urban areas, the experience of the City of Detroit should be of vital interest to many municipal officials.  相似文献   

4.
The emissions from burning the residue following grass-seed harvest were determined by means of a combined laboratory-field study. Samples of the straw and stubble residue were burned in the laboratory burning tower at the University of California at Riverside. Complete analyses were determined for gaseous and particulate emissions for the important grass species from the Willamette Valley of Oregon. Particulate emissions averaged 15.6 lb/ton of fuel burned. Carbon monoxide averaged 101 lb/ton of fuel burned. Hydrocarbon emission averages, in pounds per ton of fuel burned, were 1.74 for saturates plus acetylene, 2.80 for defines, and 1.68 for ethylene. The NOx emission, at the temperature peak during the burn, averaged 29.3 ppm. Field studies, conducted by personnel from Oregon State University, measured only particulate emissions, carbon dioxide, and temperature over the burn. The carbon dioxide values were found to be similar to those obtained on the burning table at UCR and it was therefore concluded that the other gaseous emissions were similar and could be used as reasonably accurate for emission inventories. The temperature values obtained in the laboratory and field were also similar and further justifies extrapolating the burning table data to field situations. The particulate matter collected in the field studies averaged 15.55 lb of particulate per ton of fuel burned. This is the same average obtained for the burning table data which again serves to validate the emissions reported from Riverside. Much more variability was found in the particulate emissions obtained in the field which reflects the wider range of environmental conditions encountered in the field.  相似文献   

5.
Open burning of crop residues has been identified as an important emission source of PCDD/PCDF to the environment. This paper presents the first known data on the emission of PCDD/PCDF to the land considering the influence of pesticides applied in crops planting. Emission factor for PCDD/PCDF to the land from open burning of corn straw with pesticides contamination ranged from 0.07 to 0.57 ng WHO2005-TEQ/kg straw burned with a mean value of 0.24 ng WHO2005-TEQ/kg straw burned and median value of 0.20 ng WHO2005-TEQ/kg straw burned, respectively. The concentration was 35 to 270 times higher than that without additional pesticide contaminated. Initial observation was that emission factor for PCDD/PCDF from open burning of crop residues was overestimated in the former UNEP Dioxin Toolkit. Pesticides contamination should be considered in some hotpots where special and over dosed pesticides has been sprayed especially in developing countries.  相似文献   

6.
Chemical and biological analyses were performed to characterize products of Incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenlc properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, seml-volatlle, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were Identified in either combustion emission samples or dlchloromethane washes of the used plastic. When mutagenlcity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/partlculate emissions, no toxic or mutagenlc effects were observed. However, organic extracts of the particulate samples were moderately mutagenlc. This mutagenlcity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds Identified In samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used for agricultural purposes, especially those containing halogens.  相似文献   

7.
Estimates indicate that approximately 2.6% of the total atmospheric pollution in this country may originate as a result of refuse disposal. Although this may appear to be a comparatively low figure, it is important to note that refuse disposal is a universal problem: wherever we go, be the area urban, or rural, waste must be disposed of and in most cases the methods of disposal produce air pollution. Tabulated data indicates that the per capita rate of production has been increasing annually. In the city of Hartford, the quantity of refuse that is being burned in the municipal incinerator has been increasing at a rate of 5%/year. A comparison of the air pollutants emitted from open burning at a refuse disposal area, backyard burning and incineration of refuse in a municipal multiple chamber incinerator indicates that the quantity of pollutants emitted from the latter source is much less than those emitted from the other sources. The effect of having legislation with, enforcement authority and a program for regular inspections, has resulted in marked improvements of refuse disposal operations in Connecticut since June, 1966. Most of the burning still being done at refuse disposal areas is limited to only brush and demolition material. A multi-purpose incinerator is presently under construction in the city of Stamford, Conn. It is planned to demonstrate that not only bulky wastes and auto bodies, but also liquid wastes can be burned in the same unit without creating any adverse effect on the environment. This incinerator will be provided with an electrostatic precipitator for removing particulate emissions.

New methods of refuse disposal which are being tried are briefly described in this paper. All these methods tend to reduce or eliminate air pollution along with eliminating the health hazards normally related with open face dump type of operations.

The continual technological progress and improvements in methods of manufacture, packaging, and marketing of consumer products along with the economic, population, and industrial growth of the nation has resulted in an ever-mounting increase and change in the characteristics of the mass of material being discarded by the purchaser. In May 1967, a Three-State Conference on Air Resource Management was held at the City College of the City University of New York. This conference consisted of a number of panels or committees which discussed specialized areas of the problem of air pollution and its control. A portion of the introductory remarks from the panel report of the Solid Waste Committee1 is as follows:  相似文献   

8.
A field study on grass field burning was conducted in the Willamette Valley of Oregon during the summer of 1965. Approximately 230,000 acres of grass fields are burned in the valley during August and September. Serious air pollution problems result from this burning. The purposes of the study were to determine the effect of environmental variables on grass field burning and to determine if conditions exist when significant air pollution reduction can be achieved. The environmental variables investigated were time from harvest to burning, time of day, air temperature, relative humidity, soil and straw moisture, wind speed and direction, and fuel density. The dependent variables measured were particulate emission and size distribution, combustion temperature, burn rate, amount of ash, percent of organics in the particulate, and smoke appearance. The results were analyzed statistically to determine the significant variables and their relationship.  相似文献   

9.
In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned.  相似文献   

10.
Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet–visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43?±?0.4 and 316?±?1.4 μg/m3. Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m3.  相似文献   

11.
Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter), and PM10 (PM < or = 10 microm in aerodynamic diameter). Cropland burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis also showed that crop residue burning emissions are a minor source of CH4 emissions (< 1%) compared with the CH4 emissions from other agricultural sources, specifically enteric fermentation, manure management, and rice cultivation.  相似文献   

12.
The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural areas of Korea. A 12-hr integrated intensive sampling of particulate matter (PM) with an aerodynamic diameter less than or equal to 10 microm (PM10) and PM with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) biomass burning aerosols had been conducted continuously in Gwangju, Korea, during two biomass burning periods: June 4--15, 2001, and October 8--November 14, 2002. The fine and coarse particles of biomass burning aerosols were analyzed for mass and ionic, elemental, and carbonaceous species. The average fine and coarse mass concentrations of biomass burning aerosols were, respectively, 129.6 and 24.2 microg/m3 in June 2001 and 47.1 and 33.2 microg/m3 in October--November 2002. An exceptionally high PM2.5 concentration of 157.8 microg/m3 was observed during biomass burning events under stagnant atmospheric conditions. In the fine mode, chlorine and potassium were unusually rich because of the high content of semi-arid vegetation. Both organic carbon (OC) and elemental carbon increased during the biomass burning periods, with the former exhibiting a higher abundance. PM from the open field burning of agricultural waste has an adverse impact on local air quality and regional climate.  相似文献   

13.
The feasibility of open burning under selected meteorological conditions is discussed. Meteorological provisos and nonmeteorological factors are enumerated. Topics discussed include: combustion, fuel moisture, fire hazard, forecasting, fallout and odor, and air pollution potential. A mathematical estimate of visibility reduction is described and evaluated. A procedure for estimating atmospheric ventilation is presented. The author concludes that most massive open fires result in adverse effects on either a local or areawide scale. Hence, the best meteorological decision possible is frequently one that minimizes one scale of effect at the expense of the other.  相似文献   

14.
The uncontrolled burning of household waste in barrels has recently been implicated as a major source of airborne emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). A detailed, systematic study to understand the variables affecting emissions of PCDD/Fs from burn barrels was performed. The waste composition, fullness of the barrel, and the combustion conditions within the barrel all contribute significantly to determining the emissions of PCDD/Fs from burn barrels. The study found no statistically significant effect on emissions from the Cl content of waste except at high levels, which are not representative of typical household waste. At these elevated Cl concentrations, the impact of Cl on PCDD/F emissions was found to be independent of the form of the Cl (inorganic or organic). For typical burn conditions, most of the PCDD/F emissions appear to be associated with the later stages of the burn when the waste is smoldering. Polychlorinated biphenyls (PCBs) were also measured for a subset of the tests. For the nominal waste composition, the average emissions were 76.8 ng toxic equivalency units (TEQ)WHO98/kg of waste combusted, which suggests that uncontrolled burning of household waste could be a major source of airborne PCDD/Fs in the United States.  相似文献   

15.
Flooded rice fields are one of the major biogenic methane sources. In this study, the effects of straw residual treatments on methane emission from paddy fields were discussed. The experimental field was located at Tainan District Agricultural Improvement Station in Chia-Yi county (23 degrees 25'08'N, 120degrees16'26'E) of southern Taiwan throughout the first and the second crop seasons in 2000. The seasonal methane fluxes in the first crop season with rice stubble removed, rice straw burned and rice straw incorporated were 4.41, 3.78 and 5.27 g CH4 m(-2), and the values were 32.8, 38.9 and 75.1 g CH4 m(-2) in the second crop season, respectively. In comparison of three management methods of rice straw residue, the incorporation of rice straw residue should show a significant tendency for enhancing methane emission in the second crop season. Moreover, stubble removed and straw burned treatments significantly reduced CH4 emissions by 28 approximately 56% emissions compared to straw incorporated plot. Concerning for air quality had led to legislation restricting rice straw burning, removing of rice stubble might be an appropriate methane mitigation strategy in Taiwan paddy soils.  相似文献   

16.
The air over major cities and rural regions of the Nile Delta is highly polluted during autumn which is the biomass burning season, locally known as black cloud. Previous studies have attributed the increased pollution levels during the black cloud season to the biomass or open burning of agricultural waste, vehicular, industrial emissions, and secondary aerosols. However, new multi-sensor observations (column and vertical profiles) from satellites, dust transport models and associated meteorology present a different picture of the autumn pollution. Here we show, for the first time, the evidence of long range transport of dust at high altitude (2.5-6 km) from Western Sahara and its deposition over the Nile Delta region unlike current Models. The desert dust is found to be a major contributor to the local air quality which was previously considered to be due to pollution from biomass burning enhanced by the dominant northerly winds coming from Europe.  相似文献   

17.
This study evaluates effects of good burning practice and correct installation and management of wood heaters on indoor air pollution in an Italian rural area. The same study attests the role of education in mitigating wood smoke pollution. In August 2007 and winters of 2007 and 2008, in a little mountain village of Liguria Apennines (Italy), indoor and outdoor benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations were measured in nine wood-heated houses. During the first sampling, several mistakes in heating plant installations and management were found in all houses. Indoor BTEX concentrations increased during use of wood burning. Low toluene/benzene ratios were in agreement with wood smoke as main indoor and outdoor pollution source. Other BTEX sources were identified as the indoor use of solvents and paints and incense burning. Results obtained during 2007 were presented and discussed with homeowners. Following this preventive intervention, in the second winter sampling all indoor BTEX concentrations decreased, in spite of the colder outdoor air temperatures. Information provided to families has induced the adoption of effective good practices in stoves and fire management. These results highlight the importance of education, supported by reliable data on air pollution, as an effective method to reduce wood smoke exposures.
Implications:Information about burning practices and correct installation and management of wood heaters, supported by reliable data on indoor and outdoor pollution, may help to identify and remove indoor pollution sources. This can be an effective strategy in mitigate wood smoke pollution.  相似文献   

18.
Outdoor fires, such as wildfires and prescribed burns, can emit substantial amounts of particulate matter and other pollutants into the atmosphere. In Texas, an inventory of forest, grassland and agricultural burning activities revealed that fires consumed vegetation on 1.6 and 1.7 million acres of land, in 1996 and 1997, respectively. Emissions from the fires were estimated based on survey and field data on acres burned and land cover and literature data on fuel consumption and emission factors. Fire data were allocated spatially by county and temporally by month. While fire events can cause high transient air pollutant concentrations, for most criteria pollutants, the fire emissions were a relatively small fraction of the annual emission inventory for the State. For fine particulate matter, however, the annual emission estimates were 40,000 tons/yr, which is likely to represent a significant fraction of the State's emission inventory, especially in the counties where the emissions are concentrated.  相似文献   

19.
Open sources are those stationary sources of air pollution too great in extent to be controlled through enclosure or ducting. Open sources of atmospheric particles include: wind erosion, tilling, and prescribed burning of agricultural cropland; surface mining and wind erosion of tailings piles; vehicular travel on both paved and unpaved roads; construction site activity; and forest fires. It is estimated that in 1976 the total open source emissions of particles in the U.S. amounted to over 580 × 106 ton. These estimates indicate that emissions from the two largest open source classes, travel on unpaved roads and agricultural wind erosion, accounted for 86% of this total. The open source emissions in ten states (AZ, CA, KS, MN, MT, NM, ND, OH, SD, TX) contributed 6 2% of the national emissions for 1976.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号