首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at >150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu.  相似文献   

2.
This paper presents a detailed review and critical evaluation of current technologies as applied to fine particulate emissions from coal-fired utility boilers. Quantitative assessments of the capabilities of both conventional and novel air pollution control devices to meet three different performance standards—the present New Source Performance Standard (NSPS) of 0.03 Ib particulate/MBtu heat input, and standards of 0.05 and 0.1 Ib particulate/MBtu are included. Each of the three conventional devices (electrostatic precipitator, fabric filter baghouse, and wet scrubber) is compared and rated with respect to eight different performance categories. This information can be used to determine the relative effectiveness and attractiveness of these three control devices. Novel devices are compared and rated in the same manner, the conclusions from which may provide the research administrator with a guide for the selection of those novel devices which offer the best potential for commercialization.

The major conclusions of the investigation are: (1) The use of conventional scrubbers for fine particulate control on coal-fired utility boilers may no longer be feasible at the new NSPS of 0.03 Ib/MBtu. (2) At the old NSPS (0.1 Ib/MBtu) conventional electrostatic precipitators and baghouses were often competitive. For the new stricter standard, however, the baghouse generally is the more attractive alternative. (3) Novel devices appear to offer almost no hope for this particular application (at a commercial level) between now and 1985 and only little hope before 1990.  相似文献   

3.
This is the fifth in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper describes research to improve reverse-gas cleaning technology, and to characterize reverse-gas sonic assisted and shake/deflate cleaning.  相似文献   

4.
This is the sixth and last part in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper discusses research, development and demonstration activities now underway or planned to further understand baghouse technology to ensure efficient, economic and reliable service in utility applications. In addition, it summarizes the major findings reported in Parts I through V.  相似文献   

5.
This is the third in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper provides an overview of the design and operating characteristics of baghouses now in place in the utility industry. In addition, it discusses three key issues in design and operation: the relationships among dust cake weight and chemical composition, air-to-cloth ratio, and pressure drop; fabric selection; and bag life.  相似文献   

6.
In September 1973, PEDCo-Environmental Specialists was awarded a study by the U. S. Environmental Protection Agency to evaluate the cost of controlling sulfur dioxide and particulate emissions from selected utility boilers. Since that time, PEDCo has conducted additional studies for the U. S. EPA, state and local control agencies, and private industry on the costs of control technology and the reliability of sulfur dioxide control systems. Current work includes determining the feasibility and environmental impact of converting selected utility boilers to coal-firing to conserve the nation’s gas and oil supplies. This paper presents an overview of the status and costs of flue gas desulfurization (FGD) systems, and the factors relating to the variability in costs. It is based in part upon work performed in developing detailed FGD cost estimating manuals for EPA.  相似文献   

7.
8.
The types and rates of pollutant emissions from a coal-fired power plant depend upon plant design, coal characteristics, and environmental control policy. In the past, air pollution regulations were often promulgated without rigorous analysis of the resulting energy penalties and secondary environmental impacts that occur in other environmental media (air, land, or water), which are counterproductive to overall environmental quality. This paper describes a Comparative Assessment Model that has been developed to consider systematically such tradeoffs for conventional and advanced coal-to-electric technologies. The model is applied to quantify the secondary (“cross-media”) environmental and resource impacts resulting from alternative air pollution control policies that reduce sulfur dioxide emissions from a 1000 MW power plant. Multimedia pollutant burdens are presented, together with the increased requirements for coal, limestone, and water that are incurred in generating a fixed net quantity of electricity. The development of sound public policy requires that environmental regulations be sensitive to adverse effects in all environmental media, and that tradeoffs involved in the regulation of specific pollutants to one medium be rigorously and systematically characterized.  相似文献   

9.
More than 325 representatives of utilities, research organizations, vendors, engineering service firms, universities and regulatory agencies attended the EPRI workshop on NOx Controls for Utility Boilers in Cambridge, Massachusetts, July 7–9, 1992. The workshop featured more than 30 presentations on regulatory developments, low-NOx burner (LNB) retrofits for coal?, oil? and gas-fired units, overfire air and reburning retrofits, postcombustion NOx controls and LNB procurement issues.  相似文献   

10.
The IAPCS model, developed by U.S. EPA’s Air and Energy Engineering Research Laboratory and made available to the public through the National Technical Information Service, can be used by utility companies, architectural and engineering companies, and regulatory agencies at all levels of government to evaluate commercially available technologies for control of SO2, NOx, and particulate matter emissions from coal-fired utility boilers with respect to performance and cost. The model is considered to be a useful tool to compare alternative control strategies to be used by utilities to comply with the requirements of the CAA, and to evaluate the sensitivity of control costs with respect to many of the significant variables affecting costs.

To illustrate the use of the model for site-specific studies, the authors used the model to estimate control costs for SO2 and NOx control at Detroit Edison’s Monroe plant and two hypothetical plants under consideration and at three plants operated by New York State Electric and Gas Corporation. The economic and technical assumptions used to drive the model were those proposed by the utilities if cited, and if not cited, the model default values were used. The economic format and methodologies for costs cited in the Electric Power Research Institute’s Technical Assessment Guide are used in the IAPCS model. Depending on the specific conditions and assumptions for the cases evaluated, SO2 control costs ranged from $417 to $3,159 per ton of SO2 removed, and NOx control costs ranged from $461 to $3,537 per ton of NOx removed or reduced.  相似文献   

11.
Abstract

This paper analyzes the air quality impacts of coal-fired power plants in the northern passageway of the West-East Power Transmission Project in China. A three-layer Lagrangian model called ATMOS, was used to simulate the spatial distribution of incremental sulfur dioxide (SO2) and coarse particulate matter (PM10) concentrations under different emission control scenarios. In the year 2005, the emissions from planned power plants mainly affected the air quality of Shanxi, Shaanxi, the common boundary of Inner Mongolia and Shanxi, and the area around the boundary between Inner Mongolia and Ningxia. In these areas, the annually averaged incremental SO2 and PM10 concentrations exceed 2 and 2.5 µg/m3, respectively. The maximum increases of the annually averaged SO2 and PM10 concentrations are 8.3 and 7.2 µg/m3, respectively, which occur around Hancheng city, near the boundary of the Shaanxi and Shanxi provinces. After integrated control measures are considered, the maximum increases of annually averaged SO2 and PM10 concentrations fall to 4.9 and 4 µg/m3, respectively. In the year 2010, the areas affected by planned power plants are mainly North Shaanxi, North Ningxia, and Northwest Shanxi. The maximum increases of the annually averaged SO2 and PM10 concentrations are, respectively, 6.3 and 5.6 µg/m3, occurring in Northwest Shanxi, which decline to 4.4 and 4.1 µg/m3 after the control measures are implemented. The results showed that the proposed power plants mainly affect the air quality of the region where the power plants are built, with little impact on East China where the electricity will be used. The influences of planned power plants on air quality will be decreased greatly by implementing integrated control measures.  相似文献   

12.
ABSTRACT

The air quality in five Finnish ice arenas with different volumes, ventilation systems, and resurfacer power sources (propane, gasoline, electric) was monitored during a usual training evening and a standardized, simulated ice hockey game. The measurements included continuous recording of carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2) concentrations, and sampling and analysis of volatile organic compounds (VOCs). Emissions from the ice resurfacers with combustion engines caused indoor air quality problems in all ice arenas. The highest 1-hour average CO and NO2 concentrations ranged from 20 to 33 mg/m3 (17 to 29 ppm) and 270 to 7440 µg/m3 (0.14 to 3.96 ppm), respectively. The 3-hour total VOC concentrations ranged from 150 to 1200 µg/m3. The highest CO and VOC levels were measured in the arena in which a gasoline-fueled resurfacer was used. The highest NO2 levels were measured in small ice arenas with propane-fueled ice resurfacers and insufficient ventilation.

In these arenas, the indoor NO2 levels were about 100 times the levels measured in ambient outdoor air, and the highest 1-hour concentrations were about 20 times the national and World Health Organization (WHO) health-based air quality guidelines. The air quality was fully acceptable only in the arena with an electric resurfacer. The present study showed that the air quality problems of indoor ice arenas may vary with the fuel type of resurfacer and the volume and ventilation of arena building. It also confirmed that there are severe air quality problems in Finnish ice arenas similar to those previously described in North America.  相似文献   

13.
This overview represents much of the discussion and summarizes many of the concerns emerging from the recent APCA Specialty Conference, “In-Situ Air Quality Monitoring from Moving Platforms.”

Users of mobile air quality monitoring systems have been hampered in their attempts to generate dependable data because of a lack of suitable instrumentation. Most equipment used in mobile systems was designed for laboratory or stationary monitoring applications and cannot cope well with the harsh environment encountered in aircraft or other mobile platforms. Only through innovative modifications have investigators been able to utilize off-the-shelf equipment. The technology exists, however, for manufacturers to build a much higher quality product if only a market incentive could be created.

This paper outlines problem areas which need to be addressed in the production of reliable “mobile quality” instrumentation, and suggests some market incentives.  相似文献   

14.
Abstract

During the 1950s and 1960s, hundreds of thousands of underground storage tanks (and above-ground storage tanks) containing petroleum products and hazardous chemicals were installed. Many of these tanks either have been abandoned or have exceeded their useful lives and are leaking, thereby posing a serious threat to the nation’s surface and groundwater supplies, as well as to public health. Cleaning up releases of petroleum hydrocarbons or other organic chemicals in the subsurface environment is a real-world problem,

Biological treatment of hydrocarbon-contaminated soil is considered to be a relatively low-cost and safe technology; however, its potential for effectively treating recalcitrant wastes has not been fully explored. For millions of years, microorganisms such as bacteria, fungi, actinomycete, protozoa, and others have performed the function of recycling organic matter from which new plant life can grow.

This paper examines the biological treatment technology for cleaning up petroleum product-contaminated soils, with special emphasis on microbial enzyme systems for enhancing the rate of biodegradation of petroleum hydrocarbons. Classifications and functions of enzymes, as well as the microbes, in degrading the organic contaminants are discussed. In addition, the weathering effect on biodegradation, types of hydrocarbon degraders, advantages associated with enzyme use, methods of enzyme extraction, and future research needs for development and evaluation of enzyme-assisted bioremediation are examined.  相似文献   

15.
When an airshed is affected by a spatially complex distribution of emitting sources, the angular distribution of tracer fluxes about one or more receptor sites may usefully distinguish the relative contributions of different upwind sources at that site. Such “fluxgrams” complement chemical-mass-balance receptor models to assist decisions affecting optimum emission controls and receptor placement. The technique is illustrated here with Bsp/PM10 in a heavily industrialized valley where, surprisingly, fluxgram analyses show that winter haze exceedances are associated with nighttime winds draining into the industrial lower valley from an upwind residential community.  相似文献   

16.
ABSTRACT

Under the Clean Air Act Amendments of 1990, the U.S. Environmental Protection Agency (EPA) determined that regulation of mercury emissions from coal-fired power plants is appropriate and necessary. To aid in this determination, preliminary estimates of the performance and cost of powdered activated carbon (PAC) injection-based mercury control technologies were developed. This paper presents these estimates and develops projections of costs for future applications.

Cost estimates were developed using PAC to achieve a minimum of 80% mercury removal at plants using electrostatic precipitators and a minimum of 90% removal at plants using fabric filters. These estimates ranged from 0.305 to 3.783 mills/kWh. However, the higher costs were associated with a minority of plants using hot-side electrostatic precipitators (HESPs). If these costs are excluded, the estimates range from 0.305 to 1.915 mills/kWh. Cost projections developed using a composite lime-PAC sorbent for mercury removal ranged from 0.183 to 2.270 mills/kWh, with the higher costs being associated with a minority of plants that used HESPs.  相似文献   

17.
Pulse-jet fabric filters (PJFFs) are widely used in U.S. industrial boiler applications and in utility and industrial boilers abroad. Their small size and reduced cost relative to more conventional reverse-gas baghouses makes the use of PJFFs appear to be an attractive particulate control option for utility boilers. This paper (Part 2 of a three-part series) summarizes the results of pilot PJFF studies sponsored by the Electric Power Research Institute at different utility sites in the United States. The purpose of these tests is to evaluate PJFF performance for U.S. fossil-fuel-fired applications. These data are also used to corroborate the results of a recent worldwide survey of PJFF user experience, as described in Part 1 of this series. Part 3 will provide a cost comparison of PJFFs to other particulate control options such as electrostatic precipitators and reverse-gas baghouses.  相似文献   

18.
The environmental targets of the recently agreed Baltic Sea Action Plan (BSAP) targets are likely associated with a considerable cost, which motivates a search for low-cost policies. The following review shows there is a substantial literature on cost-efficient nutrient reduction strategies, including suggestions regarding low-cost abatement, but actual policies at international and national scale tend to be considerably more expensive due to lack of instruments that ensure a cost-efficient allocation of abatement across countries and sectors. Economic research on the costs of reducing hazardous substances and oil spill damages in the Baltic Sea is not available, but lessons from the international literature suggest that resources could be used more efficiently if appropriate analysis is undertaken. Common to these pollution problems is the need to ensure that all countries in the region are provided with positive incentives to implement international agreements.  相似文献   

19.
20.
Facts that must be taken into consideration in developing fluoride standards for vegetation effects include: (1) Fluoride is an accumulative toxicant and injury is usually associated with long-term exposure; (2) gaseous and particulate fluorides differ in their phytotoxicity; (3) plant species and varieties differ greatly in susceptibility to fluoride; (4) extremely low concentrations can cause damage to sensitive species. Three possible approaches to standards are discussed: Atmospheric fluoride concentration, vegetation fluoride concentration, and the presence of leaf necrosis or chlorosis. Atmospheric fluoride concentration has the advantage that it fits the conventional concept of standards and that it is objective. Accurately measuring low fluoride concentrations, separating gaseous from particulate fluorides in the air sample, and establishing a safe concentration present technical problems, however. Vegetation analysis may more closely represent fluorides available to affect the plant. The presence of significant amounts of fluoride-induced leaf necrosis (e.g., 3% of the leaf area) may be the most practical approach to standards for fluoride vegetation effects. Advantages are that the combined effects of the forms of fluoride, species and varieties, and concentration-time relationships are all manifest in the factor that is measured. Relatively little time is required to examine the vegetation in a large area and only 2 or 3 surveys a year are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号