首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Standard protocols for sampling and measuring odor emissions from livestock buildings are needed to guide scientists, consultants, regulators, and policy-makers. A federally funded, multistate project has conducted field studies in six states to measure emissions of odor, coarse particulate matter (PM(10)), total suspended particulates, hydrogen sulfide, ammonia, and carbon dioxide from swine and poultry production buildings. The focus of this paper is on the intermittent measurement of odor concentrations at nearly identical pairs of buildings in each state and on protocols to minimize variations in these measurements. Air was collected from pig and poultry barns in small (10 L) Tedlar bags through a gas sampling system located in an instrument trailer housing gas and dust analyzers. The samples were analyzed within 30 hr by a dynamic dilution forced-choice olfactometer (a dilution apparatus). The olfactometers (AC'SCENT International Olfactometer, St. Croix Sensory, Inc.) used by all participating laboratories meet the olfactometry standards (American Society for Testing and Materials and European Committee for Standardization [CEN]) in the United States and Europe. Trained panelists (four to eight) at each laboratory measured odor concentrations (dilution to thresholds [DT]) from the bag samples. Odor emissions were calculated by multiplying odor concentration differences between inlet and outlet air by standardized (20 degrees C and 1 atm) building airflow rates.  相似文献   

2.
The odor panel using the syringe dilution technique has been successfully used to judge the effectiveness of control equipment in eliminating industrial odor problems by monitoring stack emissions. Data is presented using this odor panel method for efficiency tests of direct-flame fume incinerators performed in a large variety of industrial process applications, including pulp and paper mills, rubber processing plants, food processing plants, wire enameling plants, glass fiber manufacturing plants, paint bake ovens, brake manufacturing plants, caster manufacturing plants, rendering plants, and chemical plants. Test data shows that this method of measuring odor using the syringe dilution technique is a useful and practical tool in analyzing odor problems and determining the effectiveness of control equipment by monitoring stack emissions.  相似文献   

3.
A comparison was made between the exhaust emission characteristics of a popular make car when equipped with the stock carburetor and when equipped with a timed-port fuel injection system. A brief optimization study was made to adjust the spark timing and fuel flow characteristics to minimize emissions. Performance and economy were compared between the fuel injected and carbureted versions. Emission measurements of CO, CO2, and hydrocarbon were made in road tests by proportional sampling and through the California Cycle by continuous nondispersive infra red instrumentation.  相似文献   

4.
An improved version of the constant volume sampling (CVS) methodology that overcomes a number of obstacles that exist with the current CVS dilution tunnel system used in most diesel and gasoline vehicle emissions test facilities is presented. The key feature of the new sampling system is the introduction of dilution air immediately at the vehicle tailpipe. In the present implementation, this is done concentrically through a cylindrical air filter. Elimination of the transfer hose conventionally used to connect the tailpipe to the dilution tunnel significantly reduces the hydrocarbon and particulate matter (PM) storage release artifacts that can lead to wildly incorrect particle number counts and to erroneous filter-collected PM mass. It provides accurate representations of particle size distributions for diesel vehicles by avoiding the particle coagulation that occurs in the transfer hose. Furthermore, it removes the variable delay time that otherwise exists between the time that emissions exit the tailpipe and when they are detected in the dilution tunnel. The performance of the improved CVS system is examined with respect to diesel, gasoline, and compressed natural gas vehicles.  相似文献   

5.
Abstract

An improved version of the constant volume sampling (CVS) methodology that overcomes a number of obstacles that exist with the current CVS dilution tunnel system used in most diesel and gasoline vehicle emissions test facilities is presented. The key feature of the new sampling system is the introduction of dilution air immediately at the vehicle tailpipe. In the present implementation, this is done concentrically through a cylindrical air filter. Elimination of the transfer hose conventionally used to connect the tailpipe to the dilution tunnel significantly reduces the hydrocarbon and particulate matter (PM) storage release artifacts that can lead to wildly incorrect particle number counts and to erroneous filter-collected PM mass. It provides accurate representations of particle size distributions for diesel vehicles by avoiding the particle coagulation that occurs in the transfer hose. Furthermore, it removes the variable delay time that otherwise exists between the time that emissions exit the tailpipe and when they are detected in the dilution tunnel. The performance of the improved CVS system is examined with respect to diesel, gasoline, and compressed natural gas vehicles.  相似文献   

6.
The effects of a zeolite urea-selective catalytic reduction (SCR) aftertreatment system on a comprehensive spectrum of chemical species from diesel engine emissions were investigated in this study. Representative samples were collected with a newly developed source dilution sampling system after an aging process designed to simulate atmospheric dilution and cooling conditions. Samples were analyzed with established procedures and compared between the measurements taken from a baseline heavy-duty diesel engine and also from the same engine equipped with the exhaust aftertreatment system. The results have shown significant reductions for nitrogen oxides (NOx), carbon monoxide, total hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and organic carbon (OC) emissions. Additionally, less significant yet notable reductions were observed for particulate matter mass and metals emissions. Furthermore, the production of new species was not observed with the addition of the zeolite urea-SCR system joined with a downstream oxidation catalyst.  相似文献   

7.
A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric chemistry.  相似文献   

8.
Comparison between particle size distributions recorded directly at the tailpipes of both diesel and gasoline vehicles and measurements made using a conventional dilution tunnel reveals two problems incurred when using the latter method for studying particle number emissions. One is the potential for particulate matter (PM) artifacts originating from hydrocarbon material stored in the transfer hose connecting the tailpipe to the dilution tunnel, and the other is the particle coagulation (as well as condensation and chemical changes) that occurs during the transport. Both are potentially generic to current PM emissions measurement practices. The artifacts typically occur as a nanoparticle mode (10-30 nm) that is 2-4 orders of magnitude larger than what is present in the vehicle exhaust and can easily be mistaken for a similar mode that can arise from the nucleation of hydrocarbon or SO4(2-) components in the exhaust under appropriate dilution rates. Wind tunnel measurements are in good agreement with those made directly from the tailpipe and substantiate the potential for artifacts. They reveal PM levels for the recent model port fuel injection (PFI) gasoline vehicles tested that are small compared with the ambient background particle level during steady-state driving. The PM emissions recorded for drive cycles such as the Federal Test Procedure (FTP) and US06 occur primarily during acceleration, as has been previously noted. Light-duty diesel vehicle emissions normally exhibit a single lognormal mode centered between 55 and 80 nm, although a nonartifact nanoparticle mode in some cases appears at a 70-mph cruise up a grade.  相似文献   

9.
ABSTRACT

Comparison between particle size distributions recorded directly at the tailpipes of both diesel and gasoline vehicles and measurements made using a conventional dilution tunnel reveals two problems incurred when using the latter method for studying particle number emissions. One is the potential for particulate matter (PM) artifacts originating from hydrocarbon material stored in the transfer hose connecting the tailpipe to the dilution tunnel, and the other is the particle coagulation (as well as condensation and chemical changes) that occurs during the transport. Both are potentially generic to current PM emissions measurement practices. The artifacts typically occur as a nanoparticle mode (10–30 nm) that is 2–4 orders of magnitude larger than what is present in the vehicle exhaust and can easily be mistaken for a similar mode that can arise from the nucleation of hydrocarbon or SO4 2-components in the exhaust under appropriate dilution rates. Wind tunnel measurements are in good agreement with those made directly from the tailpipe and substantiate the potential for artifacts. They reveal PM levels for the recent model port fuel injection (PFI) gasoline vehicles tested that are small compared with the ambient background particle level during steady-state driving. The PM emissions recorded for drive cycles such as the Federal Test Procedure (FTP) and US06 occur primarily during acceleration, as has been previously noted. Light-duty diesel vehicle emissions normally exhibit a single lognormal mode centered between 55 and 80 nm, although a nonartifact nanoparticle mode in some cases appears at a 70-mph cruise up a grade.  相似文献   

10.
The Semi-Volatile Organic Sampling Train method was investigated to determine its reliability and to determine the bias and precision of the method when used to determine emissions from hazardous waste incinerators. Experiments showed that the matrix and sampling variables usually involved in sampling emissions from a hazardous waste incinerator had no significant effect on the recovery of 11 different organic compounds. Significant losses of the sampled compounds can occur during sample preparation. The degree of loss appears to be directly related to the compounds, vapor pressure. These losses can be corrected for by adding deuterated surrogates to the sample and analyzing the surrogates along with the native compounds.

The bias determination was based on dynamic spiking of the sampling train with five deuterated organic compounds selected from Appendix VIII of the Resource Conservation and Recovery Act regulations. The results show biases of from -1 ± 8 percent to -18 ± 27 percent for chlorinated and nonchlorinated compounds. Pyridine, a water-soluble compound, showed a larger bias of-29 ± 13 percent. Particular attention to the recovery of water soluble compounds is necessary to minimize bias in their determinations. Further work is needed to determine the reliability of laboratory-determined retention volumes that are used to determine sampling conditions.  相似文献   

11.
Continuous in-situ measurements of NMHCs at Mace Head, Ireland during two full annual cycles from January 2005 to January 2007 were used to investigate NMHC emission sources and transport including dilution and photochemical oxidation. The Mace Head research station is ideally located to sample a wide range of air masses including polluted European transport, clean North Atlantic and Arctic air masses and the ultra-clean, Southern Atlantic air masses. The variety in air mass sampling is used to investigate interaction of emissions, transport, dilution and photochemistry. Variability of long-lived hydrocarbon ratios is used to assess and estimate typical transport times from emission source to the Mace Head receptor. Seasonality in the ratios of isomeric alkane pairs (for butane and pentanes) are used to assess the effects of atmospheric transport and photochemical ageing. Finally, the natural logarithms of NMHC ratios are used to assess photochemical oxidation.  相似文献   

12.
Hydrocarbon emissions from gas turbine engines can be divided into unreactive and reactive components. The unreactive component consists of paraffins which do not take part in smog producing reactions with NOx. The reactive portion includes olefins, aro-matics and oxygenated derivatives of hydrocarbons which take part in smog producing reactions with NOx. Odor is attributed normally to the aromatics and oxygenates.

Previous work led to the development of a high temperature subtractive analyzer (APCA 22, 696 (1972) which separates hydrocarbon emissions into a) paraffins and b) aromatics, olefins, and oxygenates. Liquid chromatographic techniques have also been used to separate the hydrocarbons into a) aliphatics, b) aromatics, and c) oxygenates. These aliphatics include olefins.

In this work, engine emissions have been analyzed by these two techniques as a function of engine type, engine thrust (power) and fuel type. Specific engines tested were JT4, JT3D and JT9D. Fuels studied were JP5, and Jet A fuel. Power settings ranged from sub idle to high power. Results using the high temperature subtractive analyzer indicate that the % unreactive hydrocarbons ranges from 30 % at idle to near zero at high power for these engine types and fuels. In general, the higher the total hydrocarbon level, the higher the % unreactive hydrocarbons. Total hydrocarbons decrease sharply with increase in thrust. The emissions from different types of engines at various power settings were collected on an adsorbent Chromosorb 102 and the adsorbate analyzed by liquid chromatographic techniques at A. D. Little, Inc. These results showed similar trends from low power to high power. The oxygenate fraction increased and aliphatic portion decreased. However, the data for this portion of the work were very limited and no firm conclusions can be drawn.  相似文献   

13.
Odor emissions during manure spreading events have become a source of concern, particularly where farms are located nearby urban areas. The objective of the present study was to compare odor concentrations and odor emission rates due to pig manure application using two different types of applicators, a sub-surface deposition system and a conventional splash-plate applicator. Air samples were collected using a Surface Isolation Flux Chamber and the "bag-in-vacuum chamber" techniques, at 0.5, 1.5 and 2.5 hours after manure application. A three-station forced-choice dynamic dilution olfactometer was used by an odor panel for determining odor concentration. Preliminary results indicated that with the sub-surface deposition system applicator odor emission rate was reduced by 8% to 38% compared to that of the conventional splash-plate applicator. The highest reduction in odor strength and odor emission rate was observed in the most offensive period after manure application. The sub-surface deposition system may be a solution for hog producers who wish to reduce odor complaints from applying manure without the cost and problems associated with deep injection systems.  相似文献   

14.
To meet increasingly stringent regulations for diesel engines, technologies such as combustion strategies, aftertreatment components, and fuel composition have continually evolved. The emissions reduction achieved by individual aftertreatment components using the same engine and fuel has been assessed and published previously (Liu et al., 2008a, Liu et al., 2008b, Liu et al., 2008c). The present study instead adopted a systems approach to evaluate the net effect of the corresponding technologies for model-year 2004 and 2007 engines. The 2004 engine was equipped with an exhaust gas recirculation (EGR) system, while the 2007 engine had an EGR system, a crankcase emissions coalescer, and a diesel particulate filter. The test engines were operated under the transient federal test procedure and samples were collected with a source dilution sampling system designed to stimulate atmospheric cooling and dilution conditions. The samples were analyzed for elemental carbon, organic carbon, and C1, C2, and C10 through C33 particle-phase and semi-volatile organic compounds. Of the more than 150 organic species analyzed, the largest portion of the emissions from the 2004 engine consisted of formaldehyde, acetaldehyde, and naphthalene and its derivatives, which were significantly reduced by the 2007 engine and emissions technology. The systems approach in this study simulates the operation of real-world diesel engines, and may provide insight into the future development of integrated engine technology. The results supply updated information for assessing the impact of diesel engine emissions on the chemical processes, radiative properties, and toxic components of the atmosphere.  相似文献   

15.
With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results.  相似文献   

16.
Interest in regulations to control solvent emissions from automotive painting systems is increasing, especially in ozone nonattainment areas. Therefore, an accurate measurement method for VOC emissions from paint spray booths used in the automotive industry is needed to ascertain the efficiency of the spray booth capture and the total emissions. This paper presents the results of a laboratory study evaluating potential VOC sampling and analytical methods used in estimating paint spray booth emissions, and discusses these results relative to other published data. Eight test methods were selected for evaluation. The accuracy of each sampling and analytical method was determined using test atmospheres of known concentration and composition that closely matched the actual exhaust air from paint spray booths. The solvent mixture to generate the test atmospheres contained a large proportion of polar, oxygenated hydrocarbons such as ketones and alcohols. A series of identical tests was performed for each sampling/analytical method with each test atmosphere to assess the precision of the methods. The study identified significant differences among the test methods in terms of accuracy, precision, cost, and complexity.  相似文献   

17.
We present a study of the seasonal and diurnal variability of carbon monoxide and selected volatile organic compounds in the Los Angeles area. Measurements were made during four different nine-day field campaigns in April/May, September, and November, 2007, and February, 2008, at the Mt. Wilson sampling site, which is located at an elevation of approximately 1700 m in the San Gabriel Mountains overlooking Pasadena and the Los Angeles basin. The results were used to characterize the Mt. Wilson site as a representative location for monitoring integrated Los Angeles basin emissions, and, by reference to carbon monoxide emissions, to estimate average annual emissions. The considerable seasonal variability of many hydrocarbons, in both their measured mixing ratios and their relationship to carbon monoxide, was indicative of variable source strengths. Most interestingly, perturbation of C4 hydrocarbon ratios suggested an enhanced role for chlorine chemistry during the month of September, likely as the result of Los Angeles’ coastal location. Such coastal influence was confirmed by observations of enhanced mixing ratios of marine halocarbons, as well as air mass back trajectories.  相似文献   

18.
ABSTRACT

Previously reported volatile organic compounds (VOC) radiocarbon (14C) measurements for 1992 summertime Atlanta, GA, have been compared with chromatographic data and emissions inventory predictions. The chromatographic approach that was used provided a more comprehensive VOC characterization than typically achieved, and the emissions inventory was research-grade level (date-, site-, and time-specific). The comparisons are in general agreement that biogenic emissions contribute only modestly (<10%) to the VOC content of the particular ambient samples that were collected and measured. The choices of sampling site (near city-center) and times (early morning and late evening) are major influences on the results, which consequently should not be regarded as representing the average VOC biogenic impact for the Atlanta area.  相似文献   

19.
EN 14791 is a European Standard Reference method for the measurement of SO2 in emissions. This standard is based on a wet-chemical method in which SO2 present in flue gases is absorbed into an absorption solution containing hydrogen peroxide, and analyzed as sulfates after sampling. This study presents the results obtained when three portable automated measuring systems (P-AMS), based on Fourier-transform infrared (FTIR) spectroscopy, non-dispersive infrared (NDIR) and ultraviolet-fluorescence (UV) techniques, were compared to the Standard Reference Method for SO2 (EN 14791) in order to verify whether they could be used as alternative methods (AM) to EN 14791. In the case of FTIR, the measurements were performed from hot and wet gas, without any conditioning. UV-fluorescence analyzers were equipped with dilution probes and one NDIR applied a permeation dryer, whereas the other had a chiller. Tests were carried out at concentration ranges from 0 to 200 mg/m3(n) and from 0 to 800 mg/m3(n) for testing of equivalency according to CEN/TS 14793 using a test bench. Equivalency test criteria were met for all tested P-AMS except for NDIR at the lower range. The SO2 results measured with NDIR and the chiller were lower compared to the set-up with NDIR and permeation. This was most probably due to the chiller causing absorption of SO2 in the condensate. Tests were also carried out at field conditions, measuring the SO2 emissions from a boiler combusting mainly bark. The same phenomena were observed in these tests as during the test bench study, i.e. the measurement set-up with NDIR and the chiller gave the lowest results. These data demonstrated that the tested alternative methods (FTIR, UV-fluorescence, and NDIR) could be used instead of the standard reference method EN 14791, thus providing real-time calibration of automated measuring systems. It must however be emphasized that when measuring water-soluble gases, such as SO2, the choice of suitable conditioning technique is critical in order to minimize losses of the studied component in the condensate.

Implications: Portable automated measuring systems (P-AMS) provide real-time information about emissions and their concentrations, thus offering significant advantages compared to wet-chemical methods. This study presents results which can be used as a validation protocol to show that the tested P-AMS techniques (FTIR, NDIR, UV-fluorescence) could be used instead of EN 14791 (CEN 2017a) as alternative methods (AM), when paying attention to the selection of an appropriate conditioning technique.  相似文献   

20.
An estimation of hydrocarbon emissions caused by the consumption of liquefied petroleum gas (LPG) in the Metropolitan Area of Mexico City (MAMC) is presented. On the basis of experimental measurements at all points of handling, during the distribution process, and during the consumption of LPG in industrial devices and domestic appliances, an estimated 76,414 tons/year are released to the air. The most important contribution is found during the domestic consumption of LPG (70%); this makes the control initiatives available to the consumer. By developing a control program of LPG losses, a 77% reduction in emission is expected in a 5-yr period. The calculated amounts of LPG emissions when correlated with the consumption of LPG, combined with information from air samples from the MAMC, do not point to LPG emissions as the most important factor contributing to tropospheric ozone in the air in Mexico City.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号