首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The body of information presented in this paper is directed to policy makers and administrators involved in the evaluation and assessment of damages caused by oxidant air pollution on human health and welfare and of possible benefits of control.

To provide a comparison of some of the benefits that can be obtained by reducing photochemical oxidant levels, estimated health costs were derived from data relating adverse health effects to hourly oxidant concentrations. Hourly oxidant or ozone concentrations were measured at approximately 400 monitoring stations scattered throughout the U.S. Most of these sites were located in major urban areas or in other areas where high oxidant concentrations prevailed. Estimates of populations at risk and per capita health costs were generated for those areas where oxidant data was available.

During the period 1971-1973, nearly two-thirds of the U.S. population resided in areas where the hourly primary standard for oxidants of 160 µg/m3 was exceeded. The total annual health cost attributable to oxidants was estimated to range from $120 to over $240 million in the U.S.  相似文献   

2.
Whereas most estimates of material damage are based on industrial surveys, the estimates produced in this study were derived from material damage experiments and ambient air quality data. Air quality data on SO2 were obtained from 200 or more monitoring sites primarily located in heavily populated or polluted areas. Material threshold damage function data were then compared with SO2 levels, and an estimate of losses, as reflected in increased maintenance and replacement costs, was determined. Estimates of the total stock of various materials in use were derived from census and industry data and allocated geographically according to population. A substantial decrease in the ambient SO2 levels, particularly in larger urban areas, has occurred during the past five years. From 1968 to 1972, the estimated amount of material damage from SO2 in the U. S. decreased from $900 million/yr to less than $100 million. During this period, the estimated percentage of man made materials exposed to SO2 levels exceeding the proposed secondary annual average standard (60 μg/m3) and primary annual average standard (80 μg/m3) in the U. S. fell respectively, from 20% to less than 5% and from more than 10% to less than 1%. Most of the present loss is attributed to corrosion damage of metallic surfaces that are normally exposed to the ambient environment.  相似文献   

3.
Annually about 100 million automobiles suck in vast quantities of air and eject it in a contaminated state. When, pollutants are measured by weight,1 it seems that the automobile is the nation’s worst polluter. The EPA estimates that in 1969 motor vehicles accounted for 98 million tons of CO, 8.7 million tons of NOx and more than 17 million tons of HC.  相似文献   

4.
Abstract

This paper reports on the estimated potential air emissions, as found in air permits and supporting documentation, for seven of the first group of precommercial or “demonstration” cellulosic ethanol refineries (7CEDF) currently operating or planning to operate in the United States in the near future. These seven refineries are designed to produce from 330,000 to 100 million gal of ethanol per year. The overall average estimated air emission rates for criteria, hazardous, and greenhouse gas pollutants at the 7CEDF are shown here in terms of tons per year and pounds per gallon of ethanol produced. Water use rates estimated for the cellulosic ethanol refineries are also noted. The air emissions are then compared with similar estimates from a U.S. cellulosic ethanol pilot plant, a commercial Canadian cellulosic ethanol refinery, four commercial U.S. corn ethanol refineries, and U.S. petroleum refineries producing gasoline. The U.S. Environmental Protection Agency (EPA) air pollution rules that may apply to cellulosic ethanol refineries are also discussed. Using the lowest estimated emission rates from these cellulosic ethanol demonstration facilities to project air emissions, EPA’s major source thresholds for criteria and hazardous air pollutants might not be exceeded by cellulosic ethanol refineries that produce as high as 25 million gal per year of ethanol (95 ML). Emissions are expected to decrease at cellulosic ethanol refineries as the process matures and becomes more commercially viable.  相似文献   

5.
ABSTRACT

The purpose of this paper is to quantify the production of medical waste from a general hospital and to evaluate the atmospheric pollutant concentrations in gaseous emissions associated with its incineration. A 3.8 kg (bed.day)-1 production of medical waste was estimated for 1998; its incineration is related with an ash production of 0.3-0.4 kg (bed.day)-1. The concentrations of atmospheric pollutants were estimated using emission factors, comparing the effluents with and without control of atmospheric pollutants. The calculated concentrations were compared with the emission limits established by Portuguese legislation. The results indicate that, if there is no control of atmospheric pollutants, their concentrations exceed the established limits. This is observed even if correct operation and maintenance procedures are used. The emission concentrations of dioxins are higher than the Portuguese emission limit, which is particularly worrying due to the high toxicity of some of these compounds. Generally, it is possible to reduce pollutant concentrations if appropriate control equipment is used. The conclusions obtained clearly justify the great concern regarding air pollution associated with medical waste incinerators currently operating in Portugal.  相似文献   

6.
Radon control systems were Installed and evaluated In fourteen homes In the Spokane River Valley/Rathdrum Prairie and In one home In Vancouver, Washington. Because of local soil conditions, subsurface ventilation (SSV) by pressurlzatlon was always more effective In these houses than SSV by depressurlzatlon In reducing Indoor radon levels to below guidelines. Basement overpressurlzatlon was successfully applied In five houses with airtight basements where practical-sized fans could develop an overpressure of 1 to 3 Pascals. Crawlspace ventilation was more effective than crawlspace Isolation in reducing radon entry from the crawlspace, but had to be used In conjunction with other mitigation techniques, since the houses also had basements. Indoor radon concentrations In two houses with alr-toalr heat exchangers (AAHX) were reduced to levels Inversely dependent on the new total ventilation rates and were lowered even further In one house where the air distribution system was modified. Sealing penetrations In the below-grade surfaces of substructures was relatively Ineffective In controlling radon. Operation of the radon control systems (except for the AAHX’s) made no measureable change in ventilation rates or Indoor concentrations of other measured pollutants. Installation costs by treated floor area ranged from approximately $4/m2 for sealing to $28/m2 for the AAHX’s. Based on the low electric rates for the region, annual operating costs for the active systems were estimated to be approximately $60 to $170.  相似文献   

7.
Physical and economic impacts of 1978 ambient levels of ozone and sulfur dioxide on 33 crops In the San Joaquin Valley are estimated. The field data regression approach Is used and evaluated for estimating yield losses. The effects of alternative air pollution measures and regression functional forms are evaluated. An economic model is employed that accounts for both farm and market responses to yield improvements from reduced air pollution. Economic damages were estimated to exceed $100 million in 1978 with the biggest losers being the producers of cotton and producers and consumers of grapes, a crop that has heretofore been Ignored in agricultural assessments of pollution damage.  相似文献   

8.
Valuation of health effects of air pollution is becoming a critical component of the performance of cost–benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004–2008 was 272, 297, 310, 323, 298 million US$ (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM10 emission from road transport can also be estimated as 106 US $/number and 3584 US $ t?1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.  相似文献   

9.
A general procedure has been described that can be followed for estimating the cost of reducing air pollution emissions within a metropolitan region. The six step procedure examines emission inventories, regional trends, control trends, alternate control schemes, control costs, and optimum cost-effectiveness. The procedure is illustrated for one emission source in the Delaware Valley. By application of “feasible controls,” automobile emissions were shown to be reduced from 4.5 billion pounds per year in the Region during 1968 to 1.5 billion pounds in the year 2000. Annual control costs during the same period will increase from $30 million to over $300 million per year. This represents a cost increase from $15 per registered vehicle in 1968 to about $58 per vehicle per year in 2000. A method was illustrated for determining minimum cost to achieve any desired degree of emission reduction where alternate feasible control schemes are available. This method is especially useful where the allocation of scarce resources is involved. The general procedure is applicable to any number of pollutants and emission sources, and may be useful for calculations in any metropolitan area. The objectives of the present study are to apply this method to other sources within the Delaware Valley and to determine total regional costs for various levels of emission reduction. As one example of a practical application for this type of analysis, the economic impact of regulatory schemes can be evaluated on a cost-effectiveness basis  相似文献   

10.
The information presented in this paper is concerned with the effects of ambient ozone on crop yield reduction and the resultant economic losses. Yield data for nine crops within the South Coast Air Basin (SCAB) of California were obtained for the 12-year period, 1964 through 1975. Ozone concentrations, temperature, precipitation, and relative humidity data were related to the yields by using regression models. Estimated yield reductions due to ozone for 1975, varied from zero to 57% depending on crop and location. Economic welfare losses calculated from the yield reductions were $57.3 and $45.7 million for producer’s and consumer’s surplus, respectively. The total loss from ozone to agriculture related economic sectors determined by input-output analysis was $276 million in the SCAB and $36.6 million in the remainder of the state.  相似文献   

11.
Region V of the U.S. Environmental Protection Agency has conducted a comprehensive study of cancer risks from urban exposure to air pollutants in the Southeast Chicago area. This study estimated emissions of a list of 30 air carcinogens from a broad range of nontraditional, as well as traditional, source types. Using dispersion modeling and applying the appropriate unit risk factors and population data, this study estimated the risks at each receptor location and the total number of cancer cases attributable to air pollution in the area.

This analysis estimated that current concentrations would cause 77 cases of cancer over the next 70 years, an average risk of 2.0 × 10?4. Contributions from different source types and different pollutants were estimated. The total contribution from nontraditional source types was less than 0.3 percent. Although these estimates are highly uncertain, the study does suggest the nature and general magnitude of cancer risks from air pollution in the urban area studied.  相似文献   

12.
ABSTRACT

The benefits and costs of past nitrogen dioxide (NO2) control policies were calculated for Tokyo, Japan, using environmental, economic, political, demographic, and medical data from 1973 to 1994. The benefits of NO2 control were estimated as medical expenses and lost work time due to hypothetical no-control air concentrations of NO2. Direct costs were calculated as annualized capital expenditures and 1 year's operating costs for regulated industries plus governmental agency expenses. The major findings were as follows:

(1) Using Tokyo's average medical cost of pollution-related illness, the best net estimate of the avoided medical costs due to incidence of phlegm and sputum in adults was 730 billion yen ($6.08 billion; 1 U.S. dollar = 120 yen).

(2) The best net estimate of the avoided medical costs due to incidence of lower respiratory illness in children was 93 billion yen ($775 million).

(3) Using Tokyo's average duration of pollution-related illness and average wages, the best net estimate of the avoided costs of lost wages in workers was 760 billion yen ($6.33 billion).

(4) The best net estimate of the avoided costs of lost wages in mothers caring for their sick children was 100 billion yen ($833 million).

(5) Using Tokyo-specific data, the best net costs were estimated as 280 billion yen ($2.33 billion).

(6) Using human health and productivity benefits, and annualized capital cost and operating cost estimates, the best net benefits-to-costs ratio was 6:1 (upper limit 44:1; lower limit 0.3:1). Benefit calculations were sensitive to assumptions of mobile source emissions and certain health impacts that were not included. Cost calculations were highly dependent on assumptions of flue gas volume and fuel use. For comparative purposes, we identified other studies for air pollution-related illness. Assumptions that formed the basis for most of the inputs in the present study, such as duration of illness, medical treatment costs, per person illness in children, and lost wages for working mothers, were similar to those recommended in the literature. Lost wages in sick workers and per capita illness incidence in adults were higher than numbers reported elsewhere. Further advances in cost-benefit analysis (CBA) procedures to evaluate the economic effectiveness of NO2 controls in Tokyo are recommended to estimate impacts and values for additional human health benefits, ecosystem health and productivity effects, and nonliving system effects, as well as benefits of ancillary reductions in other pollutants. The present study suggests that Tokyo's past NO2 control policies in total were economically quite effective.  相似文献   

13.
Assessing the effects of air quality management strategies in urban areas is a major concern worldwide because of the large impacts on health caused by the exposure to air pollution. In this sense, this work analyses the changes in urban air quality due to the introduction of a maximum speed limit to 80 km h?1 on motorways in a large city by using a novel methodology combining traffic assimilation data and modelling systems implemented in a supercomputing facility. Albeit the methodology has been non-specifically developed and can be extrapolated to any large city or megacity, the case study of Barcelona is presented here. Hourly simulations take into account the entire year 2008 (when the 80 km h?1 limit has been introduced) vs. the traffic conditions for the year 2007. The data has been assimilated in an emission model, which considers hourly variable speeds and hourly traffic intensity in the affected area, taken from long-term measurement campaigns for the aforementioned years; it also permits to take into account the traffic congestion effect. Overall, the emissions are reduced up to 4%; however the local effects of this reduction achieve an important impact for the adjacent area to the roadways, reaching 11%. In this sense, the speed limitation effects assessed represent enhancements in air quality levels (5–7%) of primary pollutants over the area, directly improving the welfare of 1.35 million inhabitants (over 41% of the population of the Metropolitan Area) and affecting 3.29 million dwellers who are potentially benefited from this strategy for air quality management (reducing 0.6% the mortality rates in the area).  相似文献   

14.
Traffic is a major source of air pollutants in urban environments, and exposure to these pollutants may be associated with adverse health effects. However, inconsistencies in observational epidemiological studies may be caused by differential measurement errors in various approaches in assessing exposure.We aimed to evaluate a simple method for assessing outdoor air pollutant concentrations in Oslo, Norway, through a land-use regression method.Samples of nitrogen oxides (NOx) were collected in two different weeks using Ogawa passive diffusion samplers simultaneously at 80 locations across Oslo. Independent variables used in subsequent regression models as predictors of the pollutants were derived using the Arc 9 geographic information system (GIS) software. Indicators of land use, traffic, population density, and physical geography were tested.The final regression model yielded an adjusted coefficient of determination (R2) of 0.77 for nitrogen dioxide (NO2), 0.66 for nitric oxide (NO), and 0.73 for NOx.The results suggest that a good predictive exposure model can be derived from this approach, which can be used to estimate long-term small-area variation in concentrations for individual exposure assessment in epidemiological studies in a highly cost-effective way. These small-area variations in traffic pollution are important since they may have associations with health effects.  相似文献   

15.
ABSTRACT

Time-series of daily mortality data from May 1992 to September 1995 for various portions of the seven-county Philadelphia, PA, metropolitan area were analyzed in relation to weather and a variety of ambient air quality parameters. The air quality data included measurements of size-classified PM, SO4 2-, and H+ that had been collected by the Harvard School of Public Health, as well as routine air pollution monitoring data. Because the various pollutants of interest were measured at different locations within the metropolitan area, it was necessary to test for spatial sensitivity by comparing results for different combinations of locations. Estimates are presented for single pollutants and for multiple-pollutant models, including gaseous pollutants and mutually exclusive components of PM (PM2.5 and coarse particles, SO4 2- and non-SO4 2- portions of total suspended particulate [TSP] and PM10), measured on the day of death and the previous day.

We concluded that associations between air quality and mortality were not limited to data collected in the same part of the metropolitan area; that is, mortality for one part may be associated with air quality data from another, not necessarily neighboring, part. Significant associations were found for a wide variety of gaseous and particulate pollutants, especially for peak O3. Using joint regressions on peak O3 with various other pollutants, we found that the combined responses were insensitive to the specific other pollutant selected. We saw no systematic differences according to particle size or chemistry. In general, the associations between daily mortality and air pollution depended on the pollutant or the PM metric, the type of collection filter used, and the location of sampling. Although peak O3 seemed to exhibit the most consistent mortality responses, this finding should be confirmed by analyzing separate seasons and other time periods.  相似文献   

16.
《Chemosphere》1987,16(7):1405-1417
Experiments were carried out to characterize FEP (fluorinated ethylene-propylene copolymers) Teflon®bags as reactors for studies of photochemical reactions in sunlight of pollutants at low concentrations. Measurements of toluene loss, carbon monoxide oxidation and ozone formation in zero air in sun irradiated bags demonstrated a significant reactivity caused by the Teflon®film. The results indicate that such bags can be unsuitable for photochemical experiments at low (ppb) concentration levels.  相似文献   

17.
The emissions of exhaust gases (NO x , SO2, VOCs, and CO2) and particles (e.g., PM) from ships traversing Busan Port in Korea were estimated over three different years (the years 2006, 2008, and 2009). This analysis was performed according to the ship operational modes (“at sea,” “maneuvering,” and “in port”) and ship types based on an activity-based method. The ship emissions for current (base year 2009) and future scenarios (years 2020 and 2050) were also compared. The annual emissions of SO2, VOCs, PM, and CO2 were highest (9.6?×?103, 374, 1.2?×?103, and 5.6?×?105 ton year?1, respectively) in 2008. In contrast, the annual NO x emissions were highest (11.7?×?103 ton year?1) in 2006 due mainly to the high NO x emission factor. The emissions of air pollutants for each ship operational mode differed considerably, with the largest emission observed in “in port” mode. In addition, the largest fraction (approximately 45–67 %) of the emissions of all air pollutants during the study period was emitted from container ships. The future ship emissions of most pollutants (except for SO2 and PM) in 2020 and 2050 are estimated to be 1.4–1.8 and 4.7–6.1 times higher than those in 2009 (base year), respectively.  相似文献   

18.
The Methods Standardization Branch of the Environmental Protection Agency, National Environmental Research Center, has undertaken a program to standardize methods used in measuring air pollutants covered by the national primary and secondary air quality standards. This paper presents the results of a collaborative test of the method specified for carbon monoxide.

The test involved analysis of CO in air samples (in cylinders) by participating laboratories. Three concentrations, covering the range of the method which is, 0 to 58 mg/m3, were analyzed dry and humidified on each of three days by 15 collaborators. The method of analysis, nondispersive infrared spectrometry (NDIR), involved an NDIR instrument in combination with different procedures for eliminating water vapor interference. A statistical analysis of the data obtained produced the following results: 1. The checking limit for duplicates (replication error) is 0.5 mg/m3.

2. The repeatability (variation within a laboratory) is 1.6 mg/m3.

3. The reproducibility (variation between laboratories) varies nonlinearly with concentration; i.e., a minimum of 2.3 mg/m3 at a concentration of 20 mg/m3 and ranges as high as 4.3 mg/m3 in the concentration range of 0 to 58 mg/m3.

4. The reproducibility at the level of the national primary ambient air quality standard, 10 mg/m3-8-hour average, is 2.5 mg/m3 or 25%.

5. The minimum detectable sensitivity is estimated to be 0.3 mg/m3.

6. Compensation for water vapor interference is satisfactorily accomplished using drying agents and refrigeration methods. The use of narrow-band optical filters alone may not provide adequate compensation.

7. The accuracy obtained depends upon the availability of reliable calibration gases. Based on the results of this study, the method produces results that average 2.5% high.

Future papers will contain test results for methods to measure other air pollutants.  相似文献   

19.
Mumbai, a highly populated city in India, has been selected for air quality mapping and assessment of health impact using monitored air quality data. Air quality monitoring networks in Mumbai are operated by National Environment Engineering Research Institute (NEERI), Maharashtra Pollution Control Board (MPCB), and Brihanmumbai Municipal Corporation (BMC). A monitoring station represents air quality at a particular location, while we need spatial variation for air quality management. Here, air quality monitored data of NEERI and BMC were spatially interpolated using various inbuilt interpolation techniques of ArcGIS. Inverse distance weighting (IDW), Kriging (spherical and Gaussian), and spline techniques have been applied for spatial interpolation for this study. The interpolated results of air pollutants sulfur dioxide (SO2), nitrogen dioxide (NO2) and suspended particulate matter (SPM) were compared with air quality data of MPCB in the same region. Comparison of results showed good agreement for predicted values using IDW and Kriging with observed data. Subsequently, health impact assessment of a ward was carried out based on total population of the ward and air quality monitored data within the ward. Finally, health cost within a ward was estimated on the basis of exposed population. This study helps to estimate the valuation of health damage due to air pollution.

Implications: Operating more air quality monitoring stations for measurement of air quality is highly resource intensive in terms of time and cost. The appropriate spatial interpolation techniques can be used to estimate concentration where air quality monitoring stations are not available. Further, health impact assessment for the population of the city and estimation of economic cost of health damage due to ambient air quality can help to make rational control strategies for environmental management. The total health cost for Mumbai city for the year 2012, with a population of 12.4 million, was estimated as USD8000 million.  相似文献   


20.
Abstract

In Asia, limited studies have been published on the association between daily mortality and gaseous pollutants of nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2). Our previous studies in Wuhan, China, demonstrated long-term air pollution effects. However, no study has been conducted to determine mortality effects of air pollution in this region. This study was to determine the acute mortality effects of the gaseous pollutants in Wuhan, a city with 7.5 million permanent residents during the period from 2000 to 2004. There are approximately 4.5 million residents in Wuhan who live in the city’s core area of 201 km2, where air pollution levels are highest, and pollution ranges are wider than the majority of the cities in the published literature. We used the generalized additive model to analyze pollution, mortality, and covariate data. We found consistent NO2effects on mortality with the strongest effects on the same day. Every 10-μg/m3increase in NO2daily concentration on the same day was associated with an increase in nonaccidental (1.43%; 95% confidence interval [CI]: 0.87–1.99%), cardiovascular (1.65%; 95% CI: 0.87–2.45%), stroke (1.49%; 95% CI: 0.56–2.43%), cardiac (1.77%; 95% CI: 0.44–3.12%), respiratory (2.23%; 95% CI: 0.52–3.96%), and cardiopulmonary mortality (1.60%; 95% CI: 0.85– 2.35%). These effects were stronger among the elderly than among the young. Formal examination of exposure-response curves suggests no-threshold linear relationships between daily mortality and NO2, where the NO2concentrations ranged from 19.2 to 127.4 μg/m3. SO2and O3were not associated with daily mortality. The exposure-response relationships demonstrated heterogeneity, with some curves showing nonlinear relationships for SO2and O3. We conclude that there is consistent evidence of acute effects of NO2on mortality and suggest that a no-threshold linear relationship exists between NO2and mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号