首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A high flow rate four-stage impacfor was developed for the determination of aerosol concentration as a function of both particle size and time. The unit is very useful for long-term sampling intervals (24 hr) and for sampling very dusty atmospheres. Gas-borne particulate matter is collected out on four rotating drums, each with a collection surface area of about 10 sq in.; this allows a large quantity of materials to be collected without danger of particle build-up and blow-off. A particle size-collection efficiency calibration for the unit is presented together with experimental data on wall losses, surface coatings, and other important operational considerations.  相似文献   

2.
ABSTRACT

Originally constructed to develop gaseous emission factors for heavy-duty diesel trucks, the U.S. Environmental Protection Agency's (EPA) On-Road Diesel Emissions Characterization Facility has been modified to incorporate particle measurement instrumentation. An electrical low-pressure impactor designed to continuously measure and record size distribution data was used to monitor the particle size distribution of heavy-duty diesel truck exhaust. For this study, which involved a high-mileage (900,000 mi) truck running at full load, samples were collected by two different methods. One sample was obtained directly from the exhaust stack using an adaptation of the University of Minnesota's air-ejector-based mini-dilution sampler. The second sample was pulled from the plume just above the enclosed trailer, at a point ~11 m from the exhaust discharge. Typical dilution ratios of about 300:1 were obtained for both the dilution and plume sampling systems. Hundreds of particle size distributions were obtained at each sampling location. These were compared both selectively and cumulatively to evaluate the performance of the dilution system in simulating real-world exhaust plumes. The data show that, in its current residence-time configuration, the dilution system imposes a statistically significant bias toward smaller particles, with substantially more nanoparticles being collected than from the plume sample.  相似文献   

3.
Abstract

Three 2-wk seasonal field campaigns were performed in 2003 and 2004 at a sampling site on the southern Tyrrhenian coast of Italy with the aim to investigate the dynamics and characteristics of particle-bound pollutants in the Mediterranean area. Fine (PM2.5) and coarse particulate matter (PM10–2.5) size fractions were collected by a manual dichotomous sampler on 37-mm Teflon filters over a 24-hr sampling period. On average, 70% of the total PM10 (PM2.5 + PM10–2.5) mass was associated with the coarse fraction and 30% with the fine fraction during the three campaigns. The ambient concentrations of Pb, Ni, Cr, Zn, Mn, V, Cd, Fe, Cu, Ca, and Mg associated with both size fractions were determined by atomic absorption spec-trometry. Ambient concentrations showed differences in their absolute value, ranging from few ng · m-3 to µg ?m-3, as well as in their variability within the PM2.5 and PM10–2.5 size fractions. PM10 levels were well below the European Union (EU) limit value during the study period with the exception of three events during the first campaign (fall) and five events during the third campaign (spring). Two main sources were identified as the major contributors including mineral dust, transported from North Africa, and sea spray from the Tyrrhenian Sea. Comparing the results with backward trajectories, calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) and Total Ozone Mapping Spectrometer-National Aeronautics and Space Administration (TOMS-NASA) maps, it was observed that in central and eastern Europe, the Tyrrhenian Sea and North Africa were the major emission source regions that affected the temporal variations and daily averages of PM2.5 and PM10–2.5 concentrations.  相似文献   

4.
A cyclone with a 47 mm after-filter has been developed for ambient air size-selective monitoring. It has been extensively evaluated with laboratory-generated aerosol. Variation of the pressure drop and 50% cut point with flow rate show that the cyclone operates in a single flow regime with a vortex in the outlet flow. The particle size cutoff curve is comparable in sharpness to a cascade impactor and is the same for solid or liquid particles. At 21.7 L/min, D 50 is 2.5μm and at 15.4 L/min, D 50 is 3.5 μm. Collection efficiency data for flow rates from 8 to 27 L/min fit a universal curve when plotted vs. the normalized particle diameter, (D-D 50)/D 50 Reentrainment of previously deposited particles is less than 1 % of the loading per day. In field tests the cyclone has proved to be a very satisfactory size-selective sampler.  相似文献   

5.
Size distributions of particles at several downwind points in a Kraft paper mill plume have been determined by means of airborne sampling. Size distributions from samples close to the stack were found to have a log normal frequency distribution, but significant deviations from the log normal were found farther downwind. Several possible physical mechanisms are postulated as causes for this behavior. Plume dilution with background particles appears to be the most likely mechanism. The airborne sampling system is described, and electron micrographs of sampled particles are presented.  相似文献   

6.
Abstract

Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles–area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3 ?]) components, and particle sizes ranging between 0.02 and 10 μm. FINF was highest for BC (median = 0.84) and lowest for NO3 ? (median = 0.18). The low FINF for NO3 ? was likely because of volatilization of NO3 ? particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3 ?, reflecting the contributions of both particle components to PM2.5. FINF varied with particle size, air-exchange rate, and outdoor NO3 ? concentrations. The FINF for particles between 0.7 and 2 μm in size was considerably lower during periods of high as compared with low outdoor NO3 ? concentrations, suggesting that outdoor NO3 ? particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas with high concentrations of NH4NO3 and other volatile particles.  相似文献   

7.
The role of sulfur compounds in our environment has been the subject of much speculation during the past two decades. An evaluation of the effect of man-made contributions to the biogeochemical sulfur cycle requires a comprehensive examination of source magnitudes, atmospheric concentrations and removal processes. Many voids exist in our present knowledge of these parameters despite the contributions of numerous researchers. Adequate information is needed concerning the various forms of sulfur as well as other critical constituents which exist in our biosphere so that their interrelationship and role in the mechanisms of the sulfur cycle may be more fully understood.  相似文献   

8.
Recent advances in the development of receptor-oriented source apportionment techniques (models) have provided a new approach to evaluating the performance of particulate dispersion models. Rather than limiting performance evaluations to comparisons of particulate mass, receptor model estimates of source impacts can be used to open new opportunities for in-depth analysis of dispersion model performance. Recent experiences in the joint application of receptor and dispersion models have proven valuable in developing increased confidence in source impact projections used for control strategy development. Airshed studies that have followed this approach have identified major errors in emission inventory data bases and provided technical support for modeling assumptions.

This paper focuses on the joint application of dispersion and receptor models to particulate source impact analysis and dispersion model performance and evaluation. The limitations and advantages of each form of modeling are reviewed and case studies are examined. The paper is offered to provide several new perspectives into the model evaluation process in the hope that they may prove useful to those that manage our nation’s air resources.  相似文献   

9.
Abstract

Attaining the National Ambient Air Quality Standard (NAAQS) for ozone (O3) could cost billions of dollars nationwide. Attainment of the NAAQS is judged on O3 measurements made by the Federal Reference Method (FRM), ethylene chemiluminescence, or a Federal Equivalent Method (FEM), predominantly ultraviolet (UV) absorption. Starting in the 1980s, FRM monitors were replaced by FEMs so that today virtually all monitoring in the United States uses the UV methodology. This report summarizes a laboratory and collocated ambient air monitoring study of interferences in O3 monitors. Potential interferences examined in the laboratory included water vapor, mercury, o-nitrophenol, naphthalene, p-tolualdehyde, and mixed reaction products from smog chamber simulations of urban atmospheric photochemistry. UV absorption O3 monitors modi?ed for humidity equilibration were also collocated with UV FEM O3 monitors at six sites in Houston, TX, during the 2007 summer O3 season. The results suggest that humidity and interfering species can positively bias (overestimate) O3 measured by FEM monitors used to determine compliance with the O3 standards. The results also suggest that humidity equilibration can mitigate this bias.  相似文献   

10.
Volatile organic compounds can contribute to the failure of electronic equipment in both switching offices and data centers. They can also be useful indicators of ventilation needs. Only within the past decade have ambient concentrations of volatile organics been measured routinely. In standard sampling approach, a pump is used to pull a known volume of air through an adsorbent. This study examines a sampling procedure that does not use a pump, but instead depends on molecular diffusion for eventual contact between the vapor phase compounds and the charcoal sorbent (passive sampling). The technique is both simpler and less expensive than active sampling with a pump. This method has been validated for low-level sampling over extended time intervals. This study demonstrates that collected amounts vary linearly with airborne concentrations for sampling intervals in excess of four weeks: even after eight weeks of sampling at typical ambient concentrations, the amount of material collected does not approach the capacity of the sorbent. The method is applicable for concentrations spanning six orders of magnitude; reproducibility averages 13 percent of the mean value; and the sensitivity is excellent (0.06 μg/m3 or roughly 0.015 ppbv for a compound with a molecular weight of 100). The procedure has already been used successfully to monitor indoor air quality at almost a dozen telephone office and data center sites.  相似文献   

11.
ABSTRACT

Several recent studies have shown associations between ambient concentrations of particle mass (PM) and rates of morbidity and mortality in the general population. These studies have raised the issue of quality of coarse mass (CM, PM between 2.5 and 10 µm) data used for these purposes. CM data may have precision three or more times worse than the associated PM 2.5 or PM10 data, depending on the measurement method, PM 2.5 to PM 10 ratios, and CM concentrations. CM is measured either as the difference between collocated PM10 and PM2.5 samplers or more directly with a dichotomous (virtual impactor) sampler. CM precision for the difference method is degraded due to the increased errors inherent with using the difference between two independent measurements, as well as the high PM2.5 to PM10 ratios (and low CM concentrations) typical of the eastern United States. The dichotomous sampler (dichot) makes a more direct measurement of CM, but there is a potential for significant postexposure loss of particles from unoiled CM dichot filters, as well as uncertainties in the dichot’s CM channel enrichment factor. Compared to the dichot, low-volume inertial impactor samplers such as the Harvard Impactor (HI) or PM2.5 Federal Reference Method (FRM) are simpler to operate and maintain, provide sharper cut points, and do not require oiled filters to prevent loss of CM from the filter during transport. With the recent interest in CM spatial and temporal variability with respect to PM health effects, we have developed modifications to the HI PM method to provide measurements of 24-hour PM with estimated CM precision of better than 5% CV and r2 higher than 0.95, primarily by lowering field blank variability and increasing gravimetric analytical precision. These high-precision PM techniques are not limited to the HI sampler; they can also be applied to the PM2.5 FRM sampler. The measurement methods described here can be applied to future PM studies to avoid the potential problems with exposure assessment caused by CM measurements that have poor precision.  相似文献   

12.
ABSTRACT

U.S. Environmental Protection Agency (EPA) research examining the characteristics of primary PM generated by the combustion of fossil fuels is being conducted in efforts to help determine mechanisms controlling associated adverse health effects. Transition metals are of particular interest, due to the results of studies that have shown cardiopulmonary damage associated with exposure to these elements and their presence in coal and residual fuel oils. Further, elemental speciation may influence this toxicity, as some species are significantly more water-soluble, and potentially more bio-available, than others. This paper presents results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particle size distributions (PSDs) were determined using atmospheric and low-pressure impac-tion as well as electrical mobility, time-of-flight, and light-scattering techniques. Size-classified PM samples from this study are also being utilized by colleagues for animal instillation experiments.

Experimental results on the mass and compositions of particles between 0.03 and >20 μm in aerodynamic diameter show that PM from the combustion of these fuels produces distinctive bimodal and trimodal PSDs, with a fine mode dominated by vaporization, nucleation, and growth processes. Depending on the fuel and combustion equipment, the coarse mode is composed primarily of unburned carbon char and associated inherent trace elements (fuel oil) and fragments of inorganic (largely calcium-alumino-silicate) fly ash including trace elements (coal). The three coals also produced a central mode between 0.8- and 2.0-μm aerodynamic diameter. However, the origins of these particles are less clear because vapor-to-particle growth processes are unlikely to produce particles this large.

Possible mechanisms include the liberation of micron-scale mineral inclusions during char fragmentation and burnout and indicates that refractory transition metals can contribute to PM <2.5 μm without passing through a vapor phase. When burned most efficiently, the residual fuel oil produces a PSD composed almost exclusively of an ultrafine mode (~0.1 μm). The transition metals associated with these emissions are composed of water-soluble metal sulfates. In contrast, the transition metals associated with coal combustion are not significantly enriched in PM <2.5 μm and are significantly less soluble, likely because of their association with the mineral constituents. These results may have implications regarding health effects associated with exposure to these particles.  相似文献   

13.
Abstract

Currently, we have limited knowledge of the physical and chemical properties of emitted primary combustion aerosols and the changes in those properties caused by nucleation, condensation growth of volatile species, and particle coagulations under dilution and cooling in the ambient air. A dilution chamber was deployed to sample exhaust from a pilot-scale furnace burning various fuels at a nominal heat input rate of 160 kW/h?1 and 3% excess oxygen. The formation mechanisms of particles smaller than 420 nm in electrical mobility diameter were experimentally investigated by measurement with a Scanning Mobility Particle Sizer (SMPS) as a function of aging times, dilution air ratios, combustion exhaust temperatures, and fuel types. Particle formation in the dilution process is a complex mixture of nucleation, coagulation, and condensational growth, depending on the concentrations of available condensable species and solid or liquid particles (such as soot, ash) in combustion exhausts. The measured particle size distributions in number concentrations measured show peaks of particle number concentrations for medium sulfur bituminous coal, No. 6 fuel oil, and natural gas at 40-50 nm, 70-100 nm, and 15-25 nm, respectively. For No. 6 fuel oil and coal, the particle number concentration is constant in the range of a dilution air ratio of 50, but the number decreases as the dilution air ratio decreases to 10. However, for natural gas, the particle number concentration is higher at a dilution air ratio of 10 and decreases at dilution air ratios of 20-50. At a dilution air ratio of 10, severe particle coagulation occurs in a relatively short time. Samples taken at different combustion exhaust temperatures for these fuel types show higher particle number concentrations at 645 K than at 450 K. As the aging time of particles increases, the particles increase in size and the number concentrations decrease. The largest gradient of particle number distribution occurs within the first 10 sec after dilution but shows only minor differences between 10 and 80 sec. The lifetimes of the ultrafine particles are relatively short, with a scale on the order of a few seconds. Results from this study suggest that an aging time of 10 sec and a dilution air ratio of 20 are sufficient to obtain representative primary particle emission samples from stationary combustion sources.  相似文献   

14.
The availability of reliable, accurate and precise monitoring methods for toxic volatile organic compounds (VOCs) is a primary need for state and local agencies addressing daily monitoring requirements related to odor complaints, fugitive emissions, and trend monitoring. The canister-based monitoring method for VOCs is a viable and widely used approach that is based on research and evaluation performed over the past several years. This activity has involved the testing of sample stability of VOCs in canisters and the design of time-integrative samplers. The development of procedures for analysis of samples in canisters, including the procedure for VOC preconcentration from whole air, the treatment of water vapor in the sample, and the selection of an appropriate analytical finish has been accomplished. The canister-based method was initially summarized in the EPA Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air as Method TO-14. Modifications and refinements are being added to Method TO-14 in order to obtain a Statement of Work for the Superfund Contract Laboratory Program for Air. This paper discusses the developments leading to the current status of the canisterbased method and provides a critique of the method using results obtained in EPA monitoring networks.  相似文献   

15.
The diversity of hydrocarbons which are present in ambient polluted air provide a potentially rich source of information concerning the nature of this type of pollution. Measurements of the relative amounts of various hydrocarbons can be correlated with the various possible sources. Since hydrocarbon reactivities vary widely it is also possible to estimate the extent to which various individual hydrocarbons have reacted. Except for samples taken deliberately near sources of hydrocarbon pollution these air samples invariably resemble auto exhaust with an addition of natural gas and of C3–C5 paraffins which resemble gasoline vapor. Samples taken in industrial areas and near the smoke plume from a brush fire showed distinctive differences in composition. During the smog season in the fall of 1968 good data were obtained of “typical” or “representative” samples of light, medium and heavy smog. These show the expected depletion of more reactive hydrocarbons in a much more convincing way than before. By comparing these distributions with composition in unreacted samples and by making use of data from bottle irradiations, it was possible to estimate the contribution of the various hydrocarbons in terms of “amount reacted.” The amounts of higher hydrocarbons present and reacted were also estimated from gasoline composition.  相似文献   

16.
17.
Abstract

In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for par-ticulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives. A simple methodology is provided here for the selection of a neighborhood-scale site for meeting either of the two objectives identified for PM monitoring. This methodology is based on analyzing middle-scale (from 100 to 500 m) data from within the area of interest. The required data can be obtained from widely available dispersion models and emissions databases.

The performance of the siting methodology was evaluated in a neighborhood-scale field study conducted in Hudson County, NJ, to characterize the area’s inhalable particulate (PM10) concentrations. Air monitors were located within a 2- by 2-km area in the vicinity of the Lincoln Tunnel entrance in Hudson County. Results indicate the siting methodology performed well, providing a positive relationship between the predicted concentration rank at each site and the actual rank experienced during the field study. Also discussed are factors that adversely affected the predictive capabilities of the model.  相似文献   

18.
Air quality was comprehensively evaluated by means of sampling at 21 locations over metropolitan Birmingham during a period of one year. Thousands of integrated samples of three common atmospheric gaseous pollutants and two common particulate pollutants were collected and analyzed. Following the year of sampling in 1964, a random household survey was completed by conducting personal interviews at more than 7200 households over metropolitan Birmingham. Statistical reduction of household survey results by census tract and by neighborhood area provided domestic fuel and waste burning emission data as well as public (resident) opinion on specific air pollution effects. The relationship between ambient air quality and neighborhood opinion of air pollution effects on health and property are evaluated statistically. Ambient standards are suggested which are based upon those air pollution levels shown to have adverse effects on approximately one-third of the people.  相似文献   

19.
The legal basis for the control of air pollution has progressed from nuisance law to the statutory regulation of specific substances as the sophistication of the sciences involved has progressed. But, the control of air pollution by pursuing air pollutants one by one as evidence accumulates against them seems clearly inadequate to a technology producing new pollutants at an almost geometric rate and inappropriate to the gathering body of evidence relating air pollution to health effects. To understand the need for changed control concepts it is necessary to understand the biological problem and the evidence that has been accumulated.  相似文献   

20.
Abstract

The U.S. Environmental Protection Agency (EPA) is in the process of designing a national network to monitor hazardous air pollutants (HAPs), also known as air toxics. The purposes of the expanded monitoring are to (1) characterize ambient concentrations in representative areas; (2) provide data to support and evaluate dispersion and receptor models; and (3) establish trends and evaluate the effectiveness of HAP emission reduction strategies. Existing air toxics data, in the form of an archive compiled by EPA’s Office of Air Quality Planning and Standards (OAQPS), are used in this paper to examine the relationship between estimated annual average (AA) HAP concentrations and their associated variability. The goal is to assess the accuracy, or bias and precision, with which the AA can be estimated as a function of ambient concentration levels and sampling frequency. The results suggest that, for several air toxics, a sampling schedule of 1 in 3 days (1:3) or 1:6 days may be appropriate for meeting some of the general objectives of the national network, with the more intense sampling rate being recommended for areas expected to exhibit relatively high ambient levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号