首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terpenes are emitted in large quantities from vegetation into the troposphere, where they react readily with ozone, OH and NO3 radicals leading to a number of oxidation products. The current knowledge about gas-phase terpene oxidation products is reviewed. Their formation and decomposition pathways, their products and their relevance for the troposphere, and their chemical analysis are discussed. Data on oxidation kinetics, and product yields is presented for 23 terpenes and 65 oxidation products. A total of 84 references are quoted.  相似文献   

2.
Abstract

Consumer products can emit significant quantities of terpenes, which can react with ozone (O3). Resulting byproducts include compounds with low vapor pressures that contribute to the growth of secondary organic aerosols (SOAs). The focus of this study was to evaluate the potential for SOA growth, in the presence of O3, following the use of a lime-scented liquid air freshener, a pine-scented solid air freshener, a lemon-scented general-purpose cleaner, a wood floor cleaner, and a perfume. Two chamber experiments were performed for each of these five terpene-containing agents, one at an elevated O3 concentration and the other at a lower O3 concentration. Particle number and mass concentrations increased and O3 concentrations decreased during each experiment. Experiments with terpene-based air fresheners produced the highest increases in particle number and mass concentrations. The results of this study clearly demonstrate that homogeneous reactions between O3 and terpenes from various consumer products can lead to increases in fine particle mass concentrations when these products are used indoors. Particle increases can occur during periods of elevated outdoor O3 concentrations or indoor O3 generation, coupled with elevated terpene releases. Human exposure to fine particles can be reduced by minimizing indoor terpene concentrations or O3 concentrations.  相似文献   

3.
Numerous investigators have documented increases in the concentrations of airborne particles as a consequence of ozone/terpene reactions in indoor environments. This study examines the effect of building recirculation rates on the concentrations of secondary organic aerosol (SOA) resulting from reactions between indoor limonene and ozone. The experiments were conducted in a large environmental chamber using four recirculation rates (11, 14, 19 and 24 air change per hour (ACH)) and a constant outdoor air exchange rate (1 ACH) as well as constant emission rates for limonene and ozone. As the recirculation rates increased, the deposition velocities of ozone and SOA increased. As a consequence of reduced production rates (due to less ozone) and larger surface removal rates, number and mass concentrations of SOA in different size ranges decreased significantly at higher recirculation rates. Enhanced coagulation at higher recirculation rates also reduced particle number concentrations, while shifting size-distributions towards larger particles. The results have health implications beyond changes in exposures, since particle size is a factor that determines where a particle deposits in the respiratory tract.  相似文献   

4.
A kinetic mechanism to predict secondary organic aerosol (SOA) formation from the photo-oxidation of toluene was developed. Aerosol phase chemistry that includes nucleation, gas–particle partitioning and particle-phase reactions as well as the gas-phase chemistry of toluene and its degradation products were represented. The mechanism was evaluated against experimental data obtained from the University of North Carolina (UNC) 270 m3 dual outdoor aerosol smog chamber facility. The model adequately simulates the decay of toluene, the nitric oxide (NO) to nitrogen dioxide (NO2) conversion and ozone formation. It also provides a reasonable prediction of SOA production under different conditions that range from 15 to 300 μg m−3. Speciation of simulated aerosol material shows that up to 70% of the aerosol mass comes from oligomers and polymers depending on initial reactant concentrations. The dominant particle-phase species predicted by the mechanism are glyoxal oligomers, ketene oligomers from the photolysis of the toluene OH reaction product 2-methyl-2,4-hexadienedial, organic nitrates, methyl nitro-phenol analogues, C7 organic peroxides, acylperoxy nitrates and for the low-concentration experiments, unsaturated hydroxy nitro acids.  相似文献   

5.
An indoor air quality model was used to predict dynamic particle mass concentrations based on homogeneous chemical mechanisms and partitioning of semi-volatile products to particles. The ozone–limonene reaction mechanism was combined with gas-phase chemistry of common atmospheric organic and inorganic compounds and incorporated into the indoor air quality model. Experiments were conducted in an environmental chamber to investigate secondary particle formation resulting from ozone/limonene reactions. Experimental results indicate that significant fine particle growth occurs due to the interaction of ozone and limonene and subsequent intermediate by-products. Secondary particle mass concentrations were estimated from the measured particle size distribution. Predicted particle mass concentrations were in good agreement with experimental results—generally within ∼25% at steady-state conditions. Both experimental and predicted results suggest that air exchange rate plays a significant role in determining secondary fine particle levels in indoor environments. Secondary particle mass concentrations are predicted to increase substantially with lower air exchange rates, an interesting result given a continuing trend toward more energy efficient buildings. Lower air exchange rates also shifted the particle size distribution toward larger particle diameters. Secondary particle mass concentrations are also predicted to increase with higher outdoor ozone concentrations, higher outdoor particle concentrations, higher indoor limonene emission rates, and lower indoor temperatures.  相似文献   

6.
A detailed gas-phase photochemical chamber box model, incorporating the Master Chemical Mechanism (MCMv3.1) degradation scheme for the model anthropogenic aromatic compound 1,3,5-trimethylbenzene, has been used to simulate data measured during a series of aerosol chamber experiments in order to evaluate the mechanism under a variety of VOC/NOx conditions.The chamber model was used in the interpretation of comprehensive high (mass and time) resolution measurements of 1,3,5-trimethylbenzene and its photo-oxidation products recorded by a Chemical Ionisation Reaction Time-of-Flight Mass Spectrometer (CIR-TOF-MS). Supporting gas and aerosol measurements have also enabled us to explore the ‘missing link’ between the gas and aerosol phases. Model-measurement comparisons have been used to gain insight into the complex array of oxygenated products formed, including the peroxide bicyclic ring opening products (α,β-unsaturated-γ-dicarbonyls and furanones) and the O2-bridged peroxide bicyclic ring-retaining products. To our knowledge this is the first time such high molecular weight species, corresponding to various peroxide bicyclic products represented in the MCMv3.1, have been observed in the gas-phase. The model was also used to give insight into which gas-phase species were participating in SOA formation, with the primary and secondary peroxide products, formed primarily under low NOx conditions, identified as likely candidates.  相似文献   

7.
Indoor fine particles: the role of terpene emissions from consumer products   总被引:1,自引:0,他引:1  
Consumer products can emit significant quantities of terpenes, which can react with ozone (O3). Resulting byproducts include compounds with low vapor pressures that contribute to the growth of secondary organic aerosols (SOAs). The focus of this study was to evaluate the potential for SOA growth, in the presence of O3, following the use of a lime-scented liquid air freshener, a pine-scented solid air freshener, a lemon-scented general-purpose cleaner, a wood floor cleaner, and a perfume. Two chamber experiments were performed for each of these five terpene-containing agents, one at an elevated O3 concentration and-the other at a lower O3 concentration. Particle number and mass concentrations increased and O3 concentrations decreased during each experiment. Experiments with terpene-based air fresheners produced the highest increases in particle number and mass concentrations. The results of this study clearly demonstrate that homogeneous reactions between O3 and terpenes from various consumer products can lead to increases in fine particle mass concentrations when these products are used indoors. Particle increases can occur during periods of elevated outdoor O3 concentrations or indoor O3 generation, coupled with elevated terpene releases. Human exposure to fine particles can be reduced by minimizing indoor terpene concentrations or O3 concentrations.  相似文献   

8.
The reactions of gas-phase phenanthrene and suspended phenanthrene particles with ozone were conducted in a 200l chamber. The secondary organic aerosol formation was observed in the reaction of gas-phase phenanthrene with ozone and simultaneously the size distribution of the secondary organic aerosol was monitored with a scanning mobility particle sizer during the formation process. The particulate ozonation products from both reactions were analyzed with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer. 2,2′-Diformylbiphenyl was identified as the dominant product in both homogeneous and heterogeneous reactions of phenanthrene with ozone. GC/MS analysis of ozonation products of phenanthrene in glacial acetic acid was carried out for assigning time-of-flight mass spectra of reaction products formed in the homogeneous and heterogeneous reactions of phenanthrene with ozone.  相似文献   

9.
Ham JE  Wells JR 《Chemosphere》2011,83(3):327-333
Indoor environments are dynamic reactors where consumer products (such as cleaning agents, deodorants, and air fresheners) emit volatile organic compounds (VOCs) that can subsequently interact with indoor oxidants such as ozone (O3), hydroxyl radicals, and nitrate radicals. Typically, consumer products consist of mixtures of VOCs and semi-VOCs which can react in the gas-phase or on surfaces with these oxidants to generate a variety of oxygenated products. In this study, the reaction of a pine-oil cleaner (POC) with O3 (100 ppb) on a urethane-coated vinyl flooring tile was investigated at 5% and 50% relative humidity. These results were compared to previous α-terpineol + O3 reactions on glass and vinyl surfaces. Additionally, other terpene and terpene alcohol mixtures were formulated to understand the emission profiles as seen in the POC data. Results showed that the α-terpineol + O3 reaction products were the prominent species that were also observed in the POC/O3 surface experiments. Furthermore, α-terpineol + O3 reactions generate the largest fraction of oxygenated products even in equal mixtures of other terpene alcohols. This finding suggests that the judicial choice of terpene alcohols for inclusion in product formulations may be useful in reducing oxidation product emissions.  相似文献   

10.
The heterogeneous reaction of ozone with oleic acid (OA) aerosol particles was studied as function of humidity and reaction time in an aerosol flow reactor using an off-line gas chromatography mass spectrometry (GC–MS) technique. We report quantitative yields of the major C9 ozonolysis products in both gas and condensed phases and the effect of relative humidity on the product distribution. The measurements were carried out with OA aerosol particles at room temperature. The results indicate that the product yields are increasing with increasing relative humidity during the reaction. Nonanal (NN) was detected as the major gas-phase product (55.6 ± 2.3%), with 94.5 ± 2.4% of the NN yield in the gas, and 5.5 ± 2.7% in the particulate phase, whereas nonanoic, oxononanoic and azelaic acids were detected exclusively in the particulate phase. Using UV-spectrometry, we observed that peroxides make up the largest fraction of products, about half of the product aerosol mass, and their concentration decreased with increasing humidity.  相似文献   

11.
Research over the past ten years has created a more detailed and coherent view of the relation between O3 and its major anthropogenic precursors, volatile organic compounds (VOC) and oxides of nitrogen (NOx). This article presents a review of insights derived from photochemical models and field measurements. The ozone–precursor relationship can be understood in terms of a fundamental split into a NOx-senstive and VOC-sensitive (or NOx-saturated) chemical regimes. These regimes are associated with the chemistry of odd hydrogen radicals and appear in different forms in studies of urbanized regions, power plant plumes and the remote troposphere. Factors that affect the split into NOx-sensitive and VOC-sensitive chemistry include: VOC/NOx ratios, VOC reactivity, biogenic hydrocarbons, photochemical aging, and rates of meteorological dispersion. Analyses of ozone–NOx–VOC sensitivity from 3D photochemical models show a consistent pattern, but predictions for the impact of reduced NOx and VOC in indivdual locations are often very uncertain. This uncertainty can be identified by comparing predictions from different model scenarios that reflect uncertainties in meteorology, anthropogenic and biogenic emissions. Several observation-based approaches have been proposed that seek to evaluate ozone–NOx–VOC sensitivity directly from ambient measurements (including ambient VOC, reactive nitrogen, and peroxides). Observation-based approaches have also been used to evaluate emission rates, ozone production efficiency, and removal rates of chemically active species. Use of these methods in combination with models can significantly reduce the uncertainty associated with model predictions.  相似文献   

12.
The CIT/UCD three-dimensional source-oriented externally mixed air quality model is tested during a severe photochemical smog episode (Los Angeles, 7–9 September 1993) using two different chemical mechanisms that describe the formation of ozone and secondary reaction products. The first chemical mechanism is the secondary organic aerosol mechanism (SOAM) that is based on SAPRC90 with extensions to describe the formation of condensable organic products. The second chemical mechanism is the caltech atmospheric chemistry mechanism (CACM) that is based on SAPRC99 with more detailed treatment of organic oxidation products.The predicted ozone concentrations from the CIT/UCD/SOAM and the CIT/UCD/CACM models agree well with the observations made at most monitoring sites with a mean normalized error of approximately 0.4–0.5. Good agreement is generally found between the predicted and measured NOx concentrations except during morning rush hours of 6–10 am when NOx concentrations are under-predicted at most locations. Total VOC concentrations predicted by the two chemical mechanisms agree reasonably well with the observations at three of the four sites where measurements were made. Gas-phase concentrations of phenolic compounds and benzaldehyde predicted by the UCD/CIT/CACM model are higher than the measured concentrations whereas the predicted concentrations of other aromatic compounds approximately agree with the measured values.The fine airborne particulate matter mass concentrations (PM2.5) predicted by the UCD/CIT/SOAM and UCD/CIT/CACM models are slightly greater than the observed values during evening hours and lower than observed values during morning rush hours. The evening over-predictions are driven by an excess of nitrate, ammonium ion and sulfate. The UCD/CIT/CACM model predicts higher nighttime concentrations of gaseous precursors leading to the formation of particulate nitrate than the UCD/CIT/SOAM model. Elemental carbon and total organic mass are under-predicted by both models during morning rush hour periods. When this latter finding is combined with the NOx under-predictions that occur at the same time, it suggests a systematic bias in the diesel engine emissions inventory. The mass of particulate total organic carbon is under-predicted by both the UCD/CIT/SOAM and UCD/CIT/CACM models during afternoon hours. Elemental carbon concentrations generally agree with the observations at this time. Both the UCD/CIT/SOAM and UCD/CIT/CACM models predict low concentrations of secondary organic aerosol (SOA) (<3.5 μg m−3) indicating that both models could be missing SOA formation pathways. The representation of the aerosol as an internal mixture vs. a source-oriented external mixture did not significantly affect the predicted concentrations during the current study.  相似文献   

13.
Secondary aerosols from the reaction of α-pinene with ozone were generated in a 190 m3 outdoor Teflon chamber, and products of these aerosols were characterized. Products were separated by gas chromatography and detected with electron-impact mass spectrometry, chemical-impact mass spectrometry, and Fourier transform infrared spectrometry. Because products from the reaction of α-pinene with ozone contain oxidized functional groups such as carboxylic acids and carbonyls, these products are poorly resolved by standard gas chromatography. To use standard chromatographic techniques, derivatization of oxidized functional groups was necessary. Carbonyl products were derivatized with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride and carboxylic acids with pentafluorobenzyl bromide. The major identified products were nor-pinonic acid, pinonic acid, 2,2-dimethylcyclobutane-1,3-dicarboxylic acid, pinic acid, and pinonaldehyde. Dicarboxylic acids have lower vapor pressures than either their corresponding di-aldehydes or mono-acids, and have only recently been identified in α-pinene–ozone aerosols. Given their comparatively low vapor pressures, diacids contribute significantly to the aerosol formation process from the reaction of α-pinene with ozone. The composition of these secondary aerosols is strongly influenced by temperature. During the summer experiments, the aerosol composition is dominated by diacids. During the cooler winter experiments, the di-carbonyl and carbonyl-acid products also contributed to the aerosol composition.  相似文献   

14.
The molecular composition of PM2.5 (particulate matter with an aerodynamic diameter <2.5 microm) aerosol samples collected during a very warm and dry 2003 summer period at a mixed forest site in Jülich, Germany, was determined by gas chromatography/mass spectrometry in an effort to evaluate photooxidation products of biogenic volatile organic compounds (BVOCs) and other markers for aerosol source characterization. Six major classes of compounds represented by twenty-four individual organic species were identified and measured, comprising tracers for biomass combustion, short-chain acids, fatty acids, sugars/sugar alcohols, and tracers for the photooxidation of isoprene and alpha-/beta-pinene. The tracers for the photooxidation of alpha-/beta-pinene include two compounds, 3-hydroxyglutaric acid and 3-methyl-1,2,3-butanetricarboxylic acid, which have only recently been elucidated. The characteristic molecular distribution of the fatty acids with a strong even/odd number carbon preference indicates a biological origin, while the presence of isoprene and terpene secondary organic aerosol products suggests that the photooxidation of BVOCs contributes to aerosol formation at this site. The sum of the median concentrations of the isoprene oxidation products was 21.2 ng m(-3), while that of the terpene oxidation products was 19.8 ng m(-3). On the other hand, the high median concentration of malic acid (37 ng m(-3)) implies that photooxidation of unsaturated fatty acids should also be considered as an important aerosol source process. In addition, the occurrence of levoglucosan and pyrogallol indicates that the site is affected by biomass combustion. Their median concentrations were 30 and 8.9 ng m(-3), respectively.  相似文献   

15.
A radiative transfer model and photochemical box model are used to examine the effects of clouds and aerosols on actinic flux and photolysis rates, and the impacts of changes in photolysis rates on ozone production and destruction rates in a polluted urban environment like Houston, Texas. During the TexAQS-II Radical and Aerosol Measurement Project the combined cloud and aerosol effects reduced j(NO2) photolysis frequencies by nominally 17%, while aerosols reduced j(NO2) by 3% on six clear sky days. Reductions in actinic flux due to attenuation by clouds and aerosols correspond to reduced net ozone formation rates with a nearly one-to-one relationship. The overall reduction in the net ozone production rate due to reductions in photolysis rates by clouds and aerosols was approximately 8 ppbv h?1.  相似文献   

16.
The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NOx. Photochemical ozone production rates responded differently to 30% NOx and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NOx and VOCs also produced changes in OH. The responses in OH to 30% reductions in NOx and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NOx reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NOx and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NOx and VOC reductions under consideration.

Implications: The purpose of this paper is to compare predicted ozone responses to NOx and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their application in the air quality models used for policymaking.  相似文献   


17.
Atmospheric particulate matter (PM10) was collected simultaneously at three sites in the West Coast of Portugal, during an intensive campaign in August 1996. The sites were located in line with the breezes blowing from the sea. The collected aerosol was analysed in relation to black and organic carbon content. The particulate organic matter was extracted with solvents and characterised by gas chromatography and mass spectrometry (GC–MS). Most of the organic mass identified consists of alkanes, polycyclic aromatic hydrocarbons (PAH), ketones, aldehydes, alcohols and fatty acids with both biogenic and anthropogenic origin. Many photochemical products from volatile organic compounds emitted by vegetation were also detected. Biomarkers such as 6,10,14-trimethylpentadecanone, abieta-8,11,13-trien-7-one and Patchouli alcohol were observed at higher concentrations in the rural sites. Samples from the urban site present lower values of “carbon preference index” and higher concentrations of petrogenic/pyrogenic species, such as PAH. The PM10 concentrations and the total organic extract measured for the more interior site were generally lower, indicating that dispersion and dry deposition into the forest canopy were more important during the transport of the air masses than aerosol production by condensation and photochemical reactions. On the contrary, the ratio between organic and black carbon was, in general, lower at sites near the coast, especially for compounds that evaporate at lower temperatures. The organic aerosol composition also seems to be strongly dependent on the meteorology.  相似文献   

18.
The photolysis of nitrogen dioxide and formaldehyde are two of the most influential reactions in the formation of photochemical air pollution, and their rates are computed using actinic flux determined from a radiative transfer model. In this study, we compare predicted and measured nitrogen dioxide photolysis rate coefficients (jNO2). We used the Tropospheric Ultraviolet-Visible (TUV) radiation transfer model to predict jNO2 values corresponding to measurements performed in Riverside, California as part of the 1997 Southern California Ozone Study (SCOS’97). Spectrally resolved irradiance measured at the same site allowed us to determine atmospheric optical properties, such as aerosol optical depth and total ozone column, that are needed as inputs for the radiative transfer model. Matching measurements of aerosol optical depth, ozone column, and jNO2 were obtained for 14 days during SCOS’97. By using collocated measurements of the light extinction caused by aerosols and ozone over the full height of the atmosphere as model input, it was possible to predict sudden changes in jNO2 resulting from atmospheric variability. While the diurnal profile of the rate coefficient was readily reproduced, jNO2 model predicted values were found to be consistently higher than measured values. The bias between measured and predicted values was 17–36%, depending on the assumed single scattering albedo. By statistical analysis, we restricted the most likely values of the single scattering albedo to a range that produced bias on the order of 20–25%. It is likely that measurement error is responsible for a significant part of the bias. The aerosol single scattering albedo was found to be a major source of uncertainty in radiative transfer model predictions. Our best estimate indicates its average value at UV-wavelengths for the period of interest is between 0.77 and 0.85.  相似文献   

19.
Air quality models rely upon simplified photochemical mechanisms to efficiently represent the thousands of chemical species that interact to form air pollution. Uncertainties in the chemical reaction rate constants and photolysis frequencies that comprise those mechanisms can generate uncertainty in the estimation of pollutant concentrations and their responsiveness to emission controls. A high-order sensitivity analysis technique is applied to quantify the extent to which reaction rate uncertainties influence estimates of ozone concentrations and their sensitivities to precursor emissions during an air pollution episode in Houston, Texas. Several reactions were found to have much larger proportional effects on ozone’s sensitivities to emissions than on its concentrations. In particular, uncertainties in photolysis frequencies and in the rate of reaction between NO2 and OH to form nitric acid can significantly influence the magnitude and sign of peak ozone sensitivity to nitrogen oxide (NOx) emissions. Ozone sensitivity to VOCs exhibits a much more muted response to uncertainties in the reaction rate constants and photolysis frequencies considered here. The results indicate the importance of accurate reaction rate constants to predicting the ozone impacts resulting from NOx emission controls.  相似文献   

20.
The city of Santiago, Chile experiences frequent high pollution episodes and as a consequence very high ozone concentrations, which are associated with health problems including increasing daily mortality and hospital admissions for respiratory illnesses. The development of ozone abatement strategies requires the determination of the potential of each pollutant to produce ozone, taking into account known mechanisms and chemical kinetics in addition to ambient atmospheric conditions. In this study, the photochemical formation of ozone during a summer campaign carried out from March 8–20, 2005 has been investigated using an urban photochemical box model based on the Master Chemical Mechanism (MCMv3.1). The MCM box model has been constrained with 10 min averages of simultaneous measurements of HONO, HCHO, CO, NO, j(O1D), j(NO2), 31 volatile organic compounds (VOCs) and meteorological parameters. The O3–NOx–VOC sensitivities have been determined by simulating ozone formation at different VOC and NOx concentrations. Ozone sensitivity analyses showed that photochemical ozone formation is VOC-limited under average summertime conditions in Santiago. The results of the model simulations have been compared with a set of potential empirical indicator relationships including H2O2/HNO3, HCHO/NOy and O3/NOz. The ozone forming potential of each measured VOC has been determined using the MCM box model. The impacts of the above study on possible summertime ozone control strategies in Santiago are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号