首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Data from 137 sets of plume observations, comprising nearly 1 500 data points, are correlated with two simple formulae. These formulae, one for the buoyancy-dominated rise region and the other for the stratification-dominated levelled-off region of a plume, represent an approximate form of the entrainment theory of Hoult, et al. (1968)1 for the case of uniform atmospheric stratification and zero wind shear. The observations, which are those of the Tennessee Valley Authority and of Bringfelt (1968),6 were made of plumes whose source strengths ranged from 0.4 to 111 Mw and which were emitted from stacks of heights between 21 and 183 m. The two formulae are found to correlate the data equally well over all values of the stack exit and meteorological parameters, provided only that the bulk mean velocity of the stack gases exceeds the mean wind speed by at least 20%. The ratio of observed to calculated plume rise is found to be distributed log normally about the mean value.

The median rise at large distances downstream was found to differ insignificantly from that given by the effective stack height formula recommended recently11 for large buoyant plumes. Based upon the correlation, two formulae are recommended for computing median plume rise at all distances downstream of the stack. The formulae include an estimate of the expected uncertainty in the predicted rise.  相似文献   

2.
A theory for the rise of a plume in a horizontal wind is proposed in which it is assumed that, for some distance downwind of a high stack, the effects of atmospheric turbulence may be ignored in comparison with the effects of turbulence generated by the plume. The theory, an extension of the local similarity ideas used by Morton, Taylor, and Turner,1 has two empirical parameters which measure the rate that surrounding fluid is entrained into the plume. Laboratory measurements of buoyant plume motion in laminar unstratified cross flow are used to estimate the empirical parameters. Using this determination of the parameters in the theory, the trajectories of atmospheric plumes may be predicted. To make such a prediction, the observed wind velocity and temperature as functions of altitude, and flow conditions at the stack orifice, are used in numerically integrating the equations. The resulting trajectories are compared with photographs, made by Leavitt, et al.,2 of TVA, of plumes from 500 to 600 ft high stacks. Within 10 stack heights downwind of the stack, the root mean square discrepancy between the observed height of the trajectory above ground level and the theoretical value is 14%, which is about the uncertainty in the observed height. The maximum plume rise within the field of observation is within 15% of that predicted by the present theory.  相似文献   

3.
Abstract

A number of statistical techniques have been used to develop models to predict high-elevation ozone (O3) concentrations for each discrete hour of day as a function of elevation based on ground-level O3 observations. The analyses evaluated the effect of exclusion/inclusion of cloud cover as a variable. It was found that a simple model, using the current maximum ground-level O3 concentration and no effect of cloud cover provided a reasonable prediction of the vertical profile of O3, based on data analyzed from O3 sites located in North Carolina and Tennessee. The simple model provided an approach that estimates the concentration of O3 as a function of elevation (up to 1800 m) based on the statistical results with a ±13.5 ppb prediction error, an R2 of 0.56, and an index of agreement, d 1, of 0.66. The inclusion of cloud cover resulted in a slight improvement in the model over the simple regression model. The developed models, which consist of two matrices of 24 equations (one for each hour of day for clear to partly cloudy conditions and one for cloudy conditions), can be used to estimate the vertical O3 profile based on the inputs of the current day’s 1-hr maximum ground-level O3 concentration and the level of cloud cover.  相似文献   

4.
以海安县城镇“三河”(洋港河、翻身河、老焦港河)流域为例,分别对城市地表径流、农村地表径流进行了分析、测算,并通过对水质现场监测,给出了“三河”流域内的面源污染量。初步探讨了面源水污染预测方法。  相似文献   

5.
The ground level concentration of pollutants downwind of a tall chimney decreases as the effective height of the stack increases. The effective height of the stack is the actual height plus the rise of the plume center-line due to momentum and buoyancy of the effluent. Over twenty formulas to predict plume rise from stack and meteorological parameters have been proposed; none is uniformly accepted. In this paper, 711 plume rise observations were used to test the ability of fifteen of the published and commonly used formulas to predict plume rise. The plume rise data were obtained from single stacks whose heat emission rate varied over four orders of magnitude. None of the formulas tested was found to be significantly better than the others. Research was performed under the auspices of the U.S. Atomic Energy Commission.  相似文献   

6.
7.
Field loss of radionuclides from grass   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
The application of air pollution control devices requires the prediction of overall collection efficiency from the particle size distribution of the dust and the fractional efficiency of the air pollution control device. The cumulative particle size distribution of dust resulting from industrial processes can usually be represented by a straight line on logarithmic probability paper or a log normal function. The fractional efficiency curves of many air pollution control devices such as cyclones or wet scrubbers can also be adequately represented by a log normal function. Only two parameters are required to define a log normal function, a median diameter and a geometric standard deviation. Both of these can easily be obtained from a plot on logarithmic probability paper. The overall collection efficiency has been found to be Very simply related to the four parameters required to define the log normal functions representing the particle size distribution and the collector fractional efficiency. These four parameters are: the mass median diameter and the geometric standard deviation of the dust size distribution, the cut diameter (50% efficiency diameter), and geometric standard deviation of collector fractional efficiency curve. Using this relationship the prediction of overall collection efficiency is greatly simplified with no loss of accuracy.  相似文献   

10.
11.
The pollution of the atmosphere by sulfur dioxide is one of the gravest of all in public nuisance problems, especially in the industrial regions. A practically applicable method in industry for the removal of sulfur dioxide has been studied. The Kiyoura-T .I .T. process utilizes the oxidation method to convert S02 of the flue gas to S03 in the presence of vanadium oxide. A limited amount of water vapor present in the flue gas reacts with S03 to form H2SO4. Ammonia is then introduced to the gaseous mixture, which is now at the suitable temperature, to form ammonium sulfate. Conditions are controlled to produce ammonium sulfate of the right size to produce aggregate that may be removed by a dry cyclone separator.  相似文献   

12.
A coal tar contaminated site was characterized using traditional and innovative investigation methods. A careful interpretation of hydrogeological and hydrogeochemical data allowed for the conceptualization of the heterogeneous coal tar distribution in the subsurface. Past and future contaminant release from the source zone was calculated using a modeling framework consisting of a three-dimensional steady-state groundwater flow model (MODFLOW) and two hydrogeochemical models (MIN3P). Computational time of long-term simulations was reduced by simplifying the coal tar composition using 3 composite and 2 individual constituents and sequential application of a 2D centerline model (for calibration and predictions) and a 3D model (only for predictions). Predictions were carried out for a period of 1000 years. The results reveal that contaminant mass flux is governed by the geometry of zones containing residual coal tar, amount of coal tar, its composition and the physicochemical properties of the constituents. The long-term predictions made using the 2D model show that even after 1000 years, source depletion will be small with respect to phenanthrene, 89% of initial mass will be still available, and for the moderately and sparingly soluble composite constituents, 60% and 98%, respectively.  相似文献   

13.
Abstract

A wind-directional sampler for determination of dust-deposition rates has been developed, enabling the measurement of dust-deposition caused by a specific source and, at the same time, providing information on the dust-deposition rate for the background area. The sampler is called METDUST. This paper describes the results of a field evaluation of the METDUST sampler. The field evaluation was performed in a village in Southern Jutland, Denmark, where complaints of dust-deposition had occurred close to a power plant with large stockpiles of coal. The results showed that, out of a 9-month period, increased dust-deposition occurred downwind from the stockpiles during 4 months. Episodes were identified by comparison with the background deposition rate. The METDUST sampler offers an opportunity to measure the dust-deposition rate contributed by the source and the background simultaneously. It can, therefore, be used by environmental authorities to identify the “likelihood of complaint” and to define a suitable guideline for the case in question.  相似文献   

14.
Reactions between ozone and terpenes have been shown to increase the concentrations of submicron particles in indoor settings. The present study was designed to examine the influence of air exchange rates on the concentrations of these secondary organic aerosols as well as on the evolution of their particle size distributions. The experiments were performed in a manipulated office setting containing a constant source of d-limonene and an ozone generator that was remotely turned “on” or “off” at 6 h intervals. The particle number concentrations were monitored using an optical particle counter with eight-channels ranging from 0.1–0.2 to>2.0 μm diameter. The air exchange rates during the experiments were either high (working hours) or low (non-working hours) and ranged from 1.6 to>12 h−1, with intermediate exchange rates. Given the emission rates of ozone and d-limonene used in these studies, at an air exchange rate of 1.6 h−1 particle number concentration in the 0.1–0.2 μm size-range peaked 1.2 h after the ozone generator was switched on. In the ensuing 4.8 h particle counts increased in successive size-ranges up to the 0.5–0.7 μm diameter range. At higher air exchange rates, the resulting concentrations of total particles and particle mass (calculated from particle counts) were smaller, and at exchange rates exceeding 12 h−1, no excess particle formation was detectable with the instrument used in this study. Particle size evolved through accretion and, in some cases, coagulation. There was evidence for coagulation among particles in the smallest size-range at low air exchange rates (high particle concentrations) but no evidence of coagulation was apparent at higher air exchange rates (lower particle concentrations). At higher air exchange rates the particle count or size distributions were shifted towards smaller particle diameters and less time was required to achieve the maximum concentration in each of the size-ranges where discernable particle growth occurred. These results illustrate still another way in which ventilation affects human exposures in indoor settings. However, the ultimate effects of these exposures on health and well being remain to be determined.  相似文献   

15.
Hot water flushing for immiscible displacement of a viscous NAPL   总被引:2,自引:0,他引:2  
Thermal remediation techniques, such as hot water flooding, are emerging technologies that have been proposed for the removal of nonaqueous phase liquids (NAPLs) from the subsurface. In this study a combined laboratory and modeling investigation was conducted to determine if hot water flooding techniques would improve NAPL mass removal compared to ambient temperature water flushing. Two experiments were conducted in a bench scale two-dimensional sandbox (55 cmx45 cmx1.3 cm) and NAPL saturations were quantified using a light transmission apparatus. In these immiscible displacement experiments the aqueous phase, at 22 degrees C and 50 degrees C, displaced a zone with initial NAPL saturations on the order of 85%. The interfacial tension and viscosity of the selected light NAPL, Voltesso 35, are strongly temperature-dependent. Experimental results suggest that hot water flooding reduced the size of the high NAPL saturation zone, in comparison to the cold water flood, and yielded greater NAPL mass recovery (75% NAPL removal vs. 64%). Hot water flooding did not, however, result in lower residual NAPL saturations. A numerical simulator was modified to include simultaneous flow of water and organic phases, energy transport, temperature and pressure. Model predictions of mass removal and NAPL saturation profiles compared well with observed behavior. A sensitivity analysis indicates that the utility of hot water flooding improves with the increasing temperature dependence of NAPL hydraulic properties.  相似文献   

16.
Critical or activation diameters of laboratory generated organic aerosols composed of succinic acid, adipic acid and glucose were determined. Measurements of sodium chloride and ammonium sulfate aerosols were performed for comparison. Our experimental approach involved producing single component aerosol particles of a known size, and measuring the fraction of aerosol number concentrations (CN) that act as CCN at several supersaturations. The particle diameter (D50) at which the CCN/CN ratio of 0.50 is reached is defined as the critical, or activation, diameter. These experimentally derived diameters are compared with the theoretical critical diameter (DC). The results indicate that highly water-soluble organic compounds exhibit critical diameters that approach that of ammonium sulfate.  相似文献   

17.
18.
Atmospheric deposition of acidic cloud water is thought to be one of the causes for the recent forest decline in industrialized areas of the world. The present paper presents results from the Mountain Acid Deposition Program (MADPro), a part of EPA's Clean Air Status and Trends Network, (CASTnet). We used automated cloud water collectors at three selected mountain sites (Whiteface Mt., NY; Whitetop Mt., VA; and Clingman's Dome, TN) to take hourly samples from non-precipitating clouds during temperate (non- freezing) seasons of each year from 1994 to 1997. Samples were promptly analyzed for pH, conductivity, and concentration of dissolved ions. Cloud liquid water content (LWC) and meteorological parameters were measured at each site. Mean cloud frequencies and LWC of clouds were higher at Whiteface Mt., NY, than in the Southern Appalachians. The four most prevalent ions found in cloud water samples were usually, in order of decreasing concentration: sulfate (SO2−4) hydrogen (H+), ammonium (NH4+), and nitrate (NO3). Within cloud events the concentration of these major ions tended to co-vary. Typically there was an inverse relationship between LWC of the cloud and ionic concentration of the cloud water. During the sampling season, the highest ionic concentrations were seen during mid-summer. Ionic concentrations of samples from the southern sites were significantly higher than samples from Whiteface Mt., but further analysis indicates that this is at least partially due to the north–south difference in the LWC of clouds. MADPro results are shown to be comparable with previous studies of cloud chemistry in North America.  相似文献   

19.
20.
The problems associated with the design and operation of appropriate air pollution control equipment for particulate emissions from dryer-drum hot asphalt plants are discussed by outlining the basic process involved, the quantities of particulate matter being emitted, and possible methods of control. The most difficult problem seems to be the emission of a fine aerosol of unburned hydrocarbons generated as a result of the simultaneous heating and mixing of the asphaltic material. From the information presented, it was concluded that in most circumstances the venturi scrubber would be the most viable alternative to meet the 0.04 gr/dscf limitation imposed by the New Source Performance Standards promulgated by the EPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号