首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Coal-fired electricity-generating plants may use SO2 scrubbers to meet the requirements of Phase II of the Acid Rain SO2 Reduction Program. Additionally, the use of scrubbers can result in reduction of Hg and other emissions from combustion sources. It is timely, therefore, to examine the current status of SO2 scrubbing technologies. This paper presents a comprehensive review of the state of the art in flue gas desulfurization (FGD) technologies for coal-fired boilers.

Data on worldwide FGD applications reveal that wet FGD technologies, and specifically wet limestone FGD, have been predominantly selected over other FGD technologies. However, lime spray drying (LSD) is being used at the majority of the plants employing dry FGD technologies. Additional review of the U.S. FGD technology applications that began operation in 1991 through 1995 reveals that FGD processes of choice recently in the United States have been wet limestone FGD, magnesium-enhanced lime (MEL), and LSD. Further, of the wet limestone processes, limestone forced oxidation (LSFO) has been used most often in recent applications.

The SO2 removal performance of scrubbers has been reviewed. Data reflect that most wet limestone and LSD installations appear to be capable of ~90% SO2 removal. Advanced, state-of-the-art wet scrubbers can provide SO2 removal in excess of 95%.

Costs associated with state-of-the-art applications of LSFO, MEL, and LSD technologies have been analyzed with appropriate cost models. Analyses indicate that the capital cost of an LSD system is lower than those of same capacity LSFO and MEL systems, reflective of the relatively less complex hardware used in LSD. Analyses also reflect that, based on total annualized cost and SO2 removal requirements: (1) plants up to ~250 MWe in size and firing low- to medium-sulfur coals (i.e., coals with a sulfur content of 2% or lower) may use LSD; and (2) plants larger than 250 MWe and firing medium- to high-sulfur coals (i.e., coals with a sulfur content of 2% or higher) may use either LSFO or MEL.  相似文献   

2.
A computerized simulation model has been developed to compute energy requirements of a limestone slurry flue gas desulfurization (FGD) system as a function of FGD system design parameters, power plant characteristics, coal properties, and sulfur dioxide emission regulation. Results are illustrated for a "base case" plant of 500 MW, burning 3.5% sulfur coal, meeting the federal new source performance standard of 1.2 lb SO2/106 Btu. The flue gas is cleaned by an electrostatic precipitator followed by a limestone FGD system with a TCA scrubbing vessel and an optimized in-line steam reheater. The total FGD system energy requirement for this case was found to be 3.4% of the total energy input to the boiler. Sensitivity analyses were then performed in which the nominal values of ten system parameters were individually varied. This caused the total FGD system energy requirement to vary between 2.5 % and 6.1 % of the gross plant output for the range of parameters tested. The most sensitive parameters were found to be scrubbing slurry pH, which affects pumping requirements, and stack gas exit temperature, which affects reheat requirements. In all cases, FGD energy requirements were minimized when the SO2 emission standard was met by partially bypassing the scrubber. In light of the recent Clean Air Act Amendments this option may not be feasible in the future.  相似文献   

3.
The Clean Air Act Amendments of the early 1970s required coal burning utilities to reduce their emissions of sulfur dioxide. Lime or limestone based wet systems were employed for flue gas desulfurization (FGD). These systems reduced flue gas temperatures to below acid dew point conditions. Concerned about the prospect of ductwork exposed to a saturated, acid-rich environment, most utilities turned to stack gas reheat (SGR) to increase flue gas temperatures. By 1980, 82 percent of all FGD facilities employed SGR. Today there are about 130 FGD systems of which 101 employ some form of stack gas reheat.  相似文献   

4.
Pilot plant (0.1 MW) tests and utility boiler full scale demonstration (194 MW) of byproduct organic dibasic acids (DBA) as buffer additives to limestone scrubbers have shown performance improvements equivalent to those achieved by the addition of pure adipic acid. Both SO2 removal efficiency and limestone utilization increased, and no significant operating problems were observed with three of the four DBA tested. Chemical and biological evaluations of scrubber samples taken during the DBA testing indicated no detectable tOxicity or mutagenicity, and no significant environmental impact is expected as a result of DBA addition. Economic estimates indicate that substitution of DBA for pure adipic acid as a buffer additive will result in additive cost savings of 30 % or greater.  相似文献   

5.
Flue gas desulfurization: the state of the art   总被引:7,自引:0,他引:7  
Coal-fired electricity-generating plants may use SO2 scrubbers to meet the requirements of Phase II of the Acid Rain SO2 Reduction Program. Additionally, the use of scrubbers can result in reduction of Hg and other emissions from combustion sources. It is timely, therefore, to examine the current status of SO2 scrubbing technologies. This paper presents a comprehensive review of the state of the art in flue gas desulfurization (FGD) technologies for coal-fired boilers. Data on worldwide FGD applications reveal that wet FGD technologies, and specifically wet limestone FGD, have been predominantly selected over other FGD technologies. However, lime spray drying (LSD) is being used at the majority of the plants employing dry FGD technologies. Additional review of the U.S. FGD technology applications that began operation in 1991 through 1995 reveals that FGD processes of choice recently in the United States have been wet limestone FGD, magnesium-enhanced lime (MEL), and LSD. Further, of the wet limestone processes, limestone forced oxidation (LSFO) has been used most often in recent applications. The SO2 removal performance of scrubbers has been reviewed. Data reflect that most wet limestone and LSD installations appear to be capable of approximately 90% SO2 removal. Advanced, state-of-the-art wet scrubbers can provide SO2 removal in excess of 95%. Costs associated with state-of-the-art applications of LSFO, MEL, and LSD technologies have been analyzed with appropriate cost models. Analyses indicate that the capital cost of an LSD system is lower than those of same capacity LSFO and MEL systems, reflective of the relatively less complex hardware used in LSD. Analyses also reflect that, based on total annualized cost and SO2 removal requirements: (1) plants up to approximately 250 MWe in size and firing low- to medium-sulfur coals (i.e., coals with a sulfur content of 2% or lower) may use LSD; and (2) plants larger than 250 MWe and firing medium- to high-sulfur coals (i.e., coals with a sulfur content of 2% or higher) may use either LSFO or MEL.  相似文献   

6.
Abstract

As a result of the large limestone deposits available in Poland, the low cost of reagent acquisition for the large-scale technological use and relatively well-documented processes of flue gas desulfurization (FGD) technologies based on limestone sorbent slurry, wet scrubbing desulfurization is a method of choice in Poland for flue gas treatment in energy production facilities, including power plants and industrial systems. The efficiency of FGD using the above method depends on several technological and kinetic parameters, particularly on the pH value of the sorbent (i.e., ground limestone suspended in water). Consequently, many studies in Poland and abroad address the impact of various parameters on the pH value of the sorbent suspension, such as the average diameter of sorbent particles (related to the limestone pulverization degree), sorbent quality (in terms of pure calcium carbonate [CaCO3] content of the sorbent material), stoichiometric surfeit of CaCO3 in relation to sulfur dioxide (SO2) absorbed from flue gas circulating in the absorption node, time of absorption slurry retention in the absorber tank, chlorine ion concentration in sorbent slurry, and concentration of dissolved metal salts (Na, K, Mg, Fe, Al, and others). This study discusses the results of laboratory-scale tests conducted to establish the effect of the above parameters on the pH value of limestone slurry circulating in the SO2 absorption node. On the basis of the test results, a correlation equation was postulated to help maintain the desirable pH value at the design phase of the wet FGD process. The postulated equation displays good coincidence between calculated pH values and those obtained using laboratory measurements.  相似文献   

7.
己二酸和己二酸钠强化石灰石WFGD的对比研究   总被引:2,自引:0,他引:2  
在湍球塔设备上进行了己二酸和己二酸钠强化石灰石WFGD的对比研究,考察了2种添加剂对脱硫过程的强化和缓冲作用,分析计算了2种添加剂对石灰石的利用率。实验结果表明,2种添加剂可以在较低浆液pH下维持较高脱硫率,并且2种添加剂均促进了CaCO3的溶解,在相同条件下己二酸钠有更好的脱硫效果,而己二酸有更好的缓冲作用,且己二酸促进CaCO3溶解的效果更显著。  相似文献   

8.
Abstract

Emissions of acid gases such as SO2 and HCI/CI2 from energy conversion or waste incineration facilities are unacceptable. Under the various regulations, the emissions of such acid gases are regulated by the U.S. Environmental Protection Agency (EPA). Alkali metal sorbents can remove these acid gases more efficiently than the lime/limestone type sorbents used in the conventional flue gas desulfurization (FGD) systems. However, the resulting alkali metal sulfate and chloride are unsuitable for landfill disposal because they are water-soluble and can potentially leach into groundwater, altering the soil pH. Replacing the (virgin) sorbent material is expensive. Hence, it is desirable that the spent sorbent materials obtained from such emissions control systems be converted to sulfur- and chlorine-free forms, so that they can be reused. The weak-base, anionexchange resin-based desulfurization concept, developed and tested at the University of Tennessee Space Institute (UTSI), can also simultaneously remove sulfur- and chlorine- containing species from such spent sorbent materials. Under the U.S. Department of Energy’s (DOE) sponsorship, bench scale studies have been carried out at UTSI to evaluate the feasibility of removing sulfur- and chlorine-containing species using this resin-based concept. Efforts have also been made to enhance the candidate resins’ performance by carrying out the resin exhaustion step under CO2 static pressure and by using suitable pH buffering agents, such as low-molecular weight organic acids. Preliminary cost estimates for a regeneration scheme employing reactivated alkali metal-based spent sorbent material using the ion-exchange resin-based concept seem attractive and comparable to currently available options. After further development, this low-cost, simple process can be easily integrated into alkali metal sorbent-based flue gas desulfurization and acid gas emission control systems.  相似文献   

9.
The cost effective benefits of yielding a flue gas desulfurization (FGD) sludge predominantly composed of CaSO4·2H2O, have been previously established. The recovery of this material as FGD by-product gypsum has been demonstrated abroad. Recently U.S. wallboard manufacturers have recognized the viability of this recovery practice. Such techno-economic decision making variables as a) by-product specification, b) transportation costs, and c) location of suitable FGD systems enable the recognition of FGD by-product recovery. Recent investigations of resultant solids content and chloride washing reflect the technical possibility of delivering a suitable product. Commercial and economic factors favor recovery based upon rising disposal and transportation costs. Existing and near term proposed systems surface the technical and commercial problems faced by utilities considering recovery.

Generation of an oxidized FGD sludge consisting of 90+% CaSO4·2H2O and dewatered to 80+% solids is technically achievable by air sparging within the FGD system. Although the product is suitable for land disposal, electric power utilities should consider and evaluate by-product recovery. U.S. wallboard manufacturers have established technical criteria for FGD by-product gypsum. Percent CaSO4·2H2O, final solids content, particle size, and chloride content are primarily technical parameters. Technology exists within the FGD industry to satisfy these criteria and results are discussed.

Economic factors comparing mining costs, transportation costs, and disposal costs are developed for specific utility projects. Such comparison established generalized financial criteria for a given utility to develop the economic reasonableness of considering FGD byproduct recovery.

End product user perspectives are presented providing electric utilities with a realistic appreciation for by-product recovery potential. Location of existing wallboard plants highlight potential recovery regions. Quality control problems are discussed in terms of generating a by-product rather than a disposable material.  相似文献   

10.
石灰石湿法脱硫过程中SO2吸收数学模型   总被引:4,自引:1,他引:3  
为揭示石灰石湿法脱硫体系中喷淋塔内SO2的浓度和脱硫效率的变化情况,针对喷淋塔内石灰石在气膜控制、气液膜控制和固体溶解控制的3个不同阶段,以双膜理论为基础,以单个石灰石颗粒为研究对象,通过石灰石在不同阶段的转化率和粒径变化,得到SO2在不同阶段脱硫效率随时间的变化规律,建立SO2吸收的数学模型.模型计算结果表明,在烟气行程上,脱硫效率受SO2气膜传质阻力和石灰石溶解速率限制.在吸收塔底部和上端SO2吸收速率较低,在SO2和石灰石摩尔比在适宜条件下,有效吸收段高度为2 m左右.理论模型揭示的规律对喷淋塔的设计和运行参数选取有一定借鉴意义.  相似文献   

11.
Bottom ash is a waste material from coal-fired power plants, and it is known to contain elements that are potentially toxic at high concentration levels when disposed in landfills. This study investigates the use of bottom ash as a partial substitute sorbent for wet flue gas desulfurization (FGD) processes by focusing on its leaching kinetics in adipic acid. This was studied basing on the shrinking core model that was applied to the experimental data obtained by the authors presented at the International Conference on Industrial, Manufacturing, Automation and Mechanical Engineering, Johannesburg, South Africa, November 27–28, 2013) on dissolution of bottom ash. The leaching rate constant was obtained from different reaction variables, namely, temperature, pH, acid concentration, and solid-to-liquid ratio, that could affect the leaching process. The solid sample of bottom ash was characterized at different leaching periods using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that solid-to-liquid ratio had a significant effect on the leaching rate constant when compared with other variables. The leaching kinetics showed that diffusion through the product layer was the rate-controlling step during leaching, and the activation energy for the process was found to be 18.92 kJ/mol.

Implications:?The use of coal bottom ash waste as a sorbent substitute in wet flue gas desulfurization (FGD) has both economic and environmental advantages. This is because it is a waste from coal-fired thermal power plant and this study has proven that it can leach out a substantial amount of calcium ions for wet FGD process. This will abate anthropogenic pollution due to landfill disposal of bottom ash wastes and also reduce sulfur dioxide emissions.  相似文献   

12.
湿法脱硫中石灰石溶解特性的模型及实验研究   总被引:1,自引:1,他引:0  
在石灰石-石膏湿法烟气脱硫中,石灰石的溶解影响到浆液吸收SO2的能力及吸收塔持浆池的大小.根据传质及化学离子平衡理论,建立了石灰石的溶解模型,并通过实验对模型进行了验证,结果表明,模拟结果与实验值基本一致,模型较好地反映出石灰石的溶解过程;在浆液pH较低的情况下,通过增强搅拌强度,可以明显提高石灰石的溶解速率,而在浆液...  相似文献   

13.
烟气脱硫石灰石活性测试装置设计研究   总被引:1,自引:0,他引:1  
石灰石的活性对烟气脱硫工艺具有重要意义.设计了一套石灰石活性测试装置,该装置可模拟实际脱硫塔的反应过程,测试结果能够准确反映石灰石的活性.  相似文献   

14.
Sodium thiosulfate (Na2S2O3) has been tested in a pilot plant as an oxidation inhibitor in flue gas desulfurization by lime and limestone slurry scrubbing with and without MgO and adiplc acid additives. The effectiveness of thiosulfate is proportional to the inhibitor product, defined as the product of thiosulfate concentration (M), calcium concentration (M), and the moles of SO2 absorbed per hour per liter of hold tank volume. Gypsum saturation was less than 100 percent and scaling was eliminated when the inhibitor product exceeded 0.3 × 10?6(gmol/L)3/h. Thiosulfate was relatively more effective in systems with chlorides and less effective in systems promoted by MgO. An inhibitor product greater than 10?6(gmol/L)3/h significantly enhanced dewatering of solids from limestone scrubbing. SO2 removal and/or limestone utilization were increased in systems that started with less than 10 mM dissolved calcium.  相似文献   

15.
The study reported by this paper involves the use of the Controlled Condensation System (Goksoyr/Ross Coil) for flue gas S03 measurements in both the laboratory and the field, under low and high mass loadings. The Controlled Condensation System cools the flue gas to below the dewpoint of H2S04 but above the H20 dewpoint. The resulting aerosol is collected either on the coil walls or on the back-up glass frit. The laboratory recovery of the H2S04 in streams of varying S02, H20, and H2S04 content was found to be 95 ± 6%. A new quartz filter holder was designed to meet the filtration problems encountered in collecting S03 from particle laden flue gas streams. This quartz system, when heated to above 250°C, quantitatively passed the H2S04 into the condensation coil. Later studies with this filter system preloaded with fly ash equivalent to a mass loading of 1.3 g/m3 yielded a 80-85% recovery of H2S04. The laboratory system was simultaneously tested at a 150 megawatt, pulverized coal-fired power plant prior to and after a wet limestone FGD. The inlet grain loading to the FGD ranged from 0.06 g/m3 to 11.4 g/m3 with S02 concentrations as high as 4000 ppm. The average inlet H2S04 value was 8.3 ppm and the outlet from the FGD was 3.1 ppm. The source fluctuation value was determined to be ±65%.  相似文献   

16.
The growing awareness of ecological issues in Europe, reinforced by the public debate surrounding acid rain, has led to the enactment of laws and regulations in West Germany relating to emissions from large coal fired combustors.

Flue gas desulfurization (FGD) units have been compulsory for new coal fired power plants in West Germany for about 12 years. The new legislation enacted in 1983, to be met by the middle of 1988, applies not only to new plants but, unlike in the United States, also to. existing power plants (>30MW).

The law currently specifies a residual SO2 emission level of 400 mg/Nm3 (0.311b MM/BTU) for large power plants (>100 MW), but a level of 200 mg/Nm3 (0.15 lb MM/BTU) is already under discussion in some cases. The legally binding emission standards stipulate that none of the daily averages, calculated on the basis of half hour averages may exceed the concentration allowed. SO2 removal efficiencies of 90 percent to 95 percent are normally provided. Since 1983, more than 35,000 MW of retrofit FGD units have been installed in Germany to meet this SO2 standard.

The regulations also do not allow for the ponding of calcium sulfite scrubber sludge, but stipulate the production of gypsum from limestone slurry processes. Additionally the regulations require flue gases to have a minimum temperature in the stack of 72° C (162°F) after desulfurization. Treated flue gases do not have to be reheated if discharged via a cooling tower.  相似文献   

17.
Fourteen sulfur and/or sulfuric acid producing regenerate FGD processes were discussed at the 1974 FGD Symposium in Atlanta. During the period elapsed since then, considerable status change has occurred on many of these regenerable processes. Other regenerable processes which were not as well known during 1974 have surfaced in 1975. The problems of obtaining reducing gases (hydrogen sulfide, carbon monoxide, and hydrogen) for the reduction of sulfur dioxide product streams to elemental sulfur have become severe due to shortages of natural gas or other petroleum based feedstock. A new sulfur producing process which employs CO and H2 directly (rather than the H2S required for liquid and vapor base Claus reactions) is gaining attention. This paper discusses briefly: (1) the announced status of the many regenerable FGD processes, (2) the problem of reductant gas supply, and (3) the effect on FGD processes of using coal based reducing gas instead of reformed natural gas.  相似文献   

18.
This article introduces a predictive capability for Hg retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given mercury (Hg) speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO2) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections clearly signal that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO2 absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO2 capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O2 levels and the FGD temperature; weakly dependent on SO2 capture efficiency; and insensitive to HgCl2, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO3 levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg(O) but only for inlet O2 levels that are much lower than those in full-scale FGDs.  相似文献   

19.
In this presentation, adaptation of the lime/limestone process for flue gas desulfurization (FGD) is discussed and how this process can be adapted to applications in the nonferrous smelting industry such as fugitive gases, copper reverberatory furnace gases, lead sintering gases, molybdenum roasting plant tail gases, and other weak SO2 smelter gases. Different methods for particulate removal are also discussed with emphasis on how the particulate removal process can be integrated with the desulfurization process.  相似文献   

20.
粉末 颗粒喷动床 (powder particlespoutedbed ,PPSB)是近几年来由日本研究人员开发的一种新的半干法烟气脱硫技术。本文介绍了PPSB的基本原理、优点以及在试验条件下所得到的影响因素和适宜的运行方式。PPSB在系统结构、废物处理、操作和费用方面比湿法有所提高 ,同时又比干法和其他半干法的去除率和吸收剂的利用率高。此外 ,对吸收剂研究结果表明 ,石灰石的脱硫效率虽然不及石灰 ,但是由于PPSB中吸收剂的停留时间长 ,气、固、液三相接触好的特点以及可以对石灰石进行研磨 ,因此 ,利用石灰石作吸收剂的PPSB完全可以达到理想的脱硫效率 ,同时也可以保持较好的经济性。但是 ,目前还没有大规模的试验和应用。所以PPSB是一项十分值得进一步开发和应用的烟气脱硫新技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号