首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the impact of emissions at an airport on local air quality, a measurement campaign at the Zurich airport was performed from 30 June 2004 to 15 July 2004. Measurements of NO, NO2, CO and CO2 were conducted with open path devices to determine real in-use emission indices of aircraft during idling. Additionally, air samples were taken to analyse the mixing ratios of volatile organic compounds (VOC). Temporal variations of VOC mixing ratios on the airport were investigated, while other air samples were taken in the plume of an aircraft during engine ignition. CO concentrations in the vicinity of the terminals were found to be highly dependent on aircraft movement, whereas NO concentrations were dominated by emissions from ground support vehicles. The measured emission indices for aircraft showed a strong dependence upon engine type. Our work also revealed differences from emission indices published in the emission data base of the International Civil Aviation Organisation. Among the VOC, reactive C2–C3 alkenes were found in significant amounts in the exhaust of an engine compared to ambient levels. Also, isoprene, a VOC commonly associated with biogenic emissions, was found in the exhaust, however it was not detected in refuelling emissions. The benzene to toluene ratio was used to discriminate exhaust from refuelling emission. In refuelling emissions, a ratio well below 1 was found, while for exhaust this ratio was usually about 1.7.  相似文献   

2.
A pollutant dispersion model is developed, allowing fast evaluation of the maximum credible 1-h average concentration on any given ground-level receptor, along with the corresponding critical meteorological conditions (wind speed and stability class) for stacks with buoyant plumes in urban or rural areas. Site-specific meteorological data are not required, as the computed concentrations are maximized against all credible combinations of wind speed, stability class, and mixing height. The analysis is based on the dispersion relations of Pasquill-Gifford and Briggs for rural and urban settings, respectively, the buoyancy induced dispersion correlation of Pasquill, the wind profile exponent values suggested by Irwin, the buoyant plume rise relations of Briggs, as well as the Benkley and Schulman's model for the minimum mixing heights. The model is particularly suited for air pollution management studies, as it allows fast screening of the maximum impact on any selected receptor and evaluation of the ways to have this impact reduced. It is also suited for regulatory purposes, as it can be used to define the minimum stack size requirements for a given source as a function of the exit gas volume and temperature, the pollutant emission rates and their hourly concentration standards, as well as the source location relative to sensitive receptors.  相似文献   

3.
A study of the potential effectiveness of several strategies for reducing pollutant emissions from aircraft at a busy metropolitan airport has been carried out. This work is based on a model of emission-producing activities at the Hartsfield Atlanta International Airport and emissions from additional sources in the region surrounding the airport. A steady-state Gaussian plume dispersion model, developed previously,1-4 was used to determine pollutant concentrations at selected receptor sites. The model of the Atlanta airport was assembled to evaluate the results of a field test of one of the strategies (engine shutdown during taxiing) performed there in late 1973. The results of that field test are reported elsewhere.5,6 A full discussion of the interpretation of the comparison between modeled and monitored pollutant concentrations during the field test and the examination of alternative strategies noted, here are contained in the final report of this project.7  相似文献   

4.
Potential reductions in air pollutant emissions were determined for four strategies to control aircraft ground operations at two case study airports, Los Angeles and San Francisco International Airports. Safety, cost, and fuel savings associated with strategy implementation were examined.

Two strategies, aircraft towing and shutdown of one engine during taxi operations, provided significant emission reductions. However, there are a number of safety problems associated with aircraft towing. The shutdown of one engine while taxiing was found to be the most viable strategy because of substantial emission reductions, cost benefits resulting from fuel savings, and no apparent safety problems.  相似文献   

5.
The dry lakebed of what once was the lake of Texcoco is the location selected for the New International Airport of Mexico City. This project will generate an important urban development near the airport with regional implications on air quality. Using a prognostic air quality model, the consequences of photochemical air pollution in the metropolitan area of Mexico City resulting from three possible coverings for the areas of the lakebed that are not occupied by the runway and terminal building are investigated. These coverings are desert, grassland, and water and occupy an area of 63 km2. This study is based on a representative high pollution episode. In addition to reducing the emission of primary natural particles, the water covering generates a land-water breeze capable of maintaining enough ventilation to reduce pollutant concentrations over a localized region of the metropolitan area and may enhance the wind speed on the coasts of the proposed lake.  相似文献   

6.
This paper is concerned with uncertainties involved in projecting ambient air quality. Ambient air quality was projected by assuming a linear dependence on estimated future emissions. Future automotive emissions were estimated by a method recommended by EPA. Projections were made for the locations reported to have the highest ambient air concentrations of each pollutant; Chicago for carbon monoxide and the California South Coast Air Basin for hydrocarbon and oxidant. The sensitivity of the projections to several input parameters was determined.

The uncertainty in projection of air quality due to the use of a maximum, once-per-year concentration is large. For example, the reduction in total CO emissions in Chicago in 1975, necessary to meet the air quality standard, was as high as 68% or as low as 26%, depending on whether the historic high, 8 hr average concentration of 44 ppm or the 1970 maximum of 21 ppm was used. The effects of uncertainties in growth rates and fraction of emissions attributed to the automobile were also sizeable. Differences in automotive growth rate had a large near-term effect on projected concentrations, while differences in nonautomotive growth rate or fraction of emissions attributed to the automobile had a large long-term effect. The effect of 1975 interim automotive emission standards on projected air quality was negligible when compared with projected air quality based on the previous Federal automotive emission standards for 1975.  相似文献   

7.
Analysis of vertical temperature soundings at Los Angeles International Airport (LAX) shows that a conservative height of the inversion base for pollutant containment purposes is 490 ft (150 m). This altitude is considerably less than the 3000 ft (914 m) pollution containment altitude assumed by the EPA in preparing their emission inventory for the airport. (Figure 1.) After correcting the EPA emission inventory to reflect a real world inversion height, the emission inventory for aircraft at Los Angeles International Airport is estimated to be approximately 50% less. Aircraft thus become a less significant pollution source and consideration should be given to relaxing engine emission control requirements accordingly.

This paper examines current emission control philosophy, which according to the EPA should be based upon the significance of the particular polluting source. The problem of accounting for above ground aircraft emissions is then considered. Daily inversion height data are then used to determine a realistic vertical containment altitude for aircraft emissions. Problems in obtaining good inversion data are described. Finally, aircraft emissions at Los Angeles International Airport are adjusted to reflect real world inversion conditions on those days when the inversion height is low enough to influence significantly air pollution levels. Recommendations are made for additional research leading to possible change to NOx emission control requirements for aircraft.  相似文献   

8.
Abstract

The dry lakebed of what once was the lake of Texcoco is the location selected for the New International Airport of Mexico City. This project will generate an important urban development near the airport with regional implications on air quality. Using a prognostic air quality model, the consequences of photochemical air pollution in the metropolitan area of Mexico City resulting from three possible coverings for the areas of the lakebed that are not occupied by the runway and terminal building are investigated. These coverings are desert, grassland, and water and occupy an area of 63 km2. This study is based on a representative high pollution episode. In addition to reducing the emission of primary natural particles, the water covering generates a land-water breeze capable of maintaining enough ventilation to reduce pollutant concentrations over a localized region of the metropolitan area and may enhance the wind speed on the coasts of the proposed lake.  相似文献   

9.
Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter > or = 10 microm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km x 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of approximately 0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.  相似文献   

10.
Abstract

Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter >10 μm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km × 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of ~0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.  相似文献   

11.
Air pollution caused by ship exhaust emission is receiving more and more attention. The physical and chemical properties of fuels, such as sulfur content and PAHs content, potentially had a significant influence on air pollutant emissions from inland vessels. In order to investigate the effects of fuel qualities on atmospheric pollutant emissions systematically, a series of experiments was conducted based on the method of actual ship testing. As a result, SO2, PM and NOx emission rates all increased with the increase of main engine rotating speed under cruise mode, while PM and NOx emission factors were inversely proportional to the main engine rotating speed. Moreover, SO2 emission factor changed little with the increase of the main engine rotating speed. In summary, the fuel-dependent specific emission of SO2 was a direct reflection of the sulfur content in fuel. The PM emission increased with the increase of sulfur content and PAHs content in fuel. However, fuel qualities impacted little on NOx emissions from inland vessels because of NOx formation mechanisms and conditions.

Implications: Ship activity is considered to be the third largest source of air pollution in China. In particular, air pollutants emitted from ships in river ports and waterways have a direct impact on regional air quality and pose threat on the health of local residents owing to high pollutants concentration and poor air diffusion. The study on the relationship between air pollutant emissions and fuel quality of inland vessels can provide foundational data for local authority to formulate reasonable and appropriate policies for reducing atmospheric pollution due to inland vessels.  相似文献   


12.
Street intersections play an important role in determining pollutant concentrations in the urban canopy – vehicle emissions often increase in the vicinity of road intersections, and the complex flow patterns that occur within the intersection determine the pollutant fluxes into adjoining streets and into the atmosphere. Operational models for urban air quality therefore need to take account of the particular characteristics of street intersections. We have performed an experimental and numerical investigation of flow and dispersion mechanisms within an urban intersection, and on the basis of our observations and results, we have developed a new operational model for pollutant exchanges in the intersection, which takes account of the non-uniformity of the pollutant fluxes entering and leaving the intersection. The intersection is created by two streets of square cross-section, crossing orthogonally; concentrations were measured by releasing a neutrally buoyant tracer gas from a line source located in one of the streets. As a general result, the numerical simulations agree well with the measurements made in the wind tunnel experiments, except for the case of ground-level concentrations, where the computed concentrations far from the axis of the line source are significantly lower than the measured values. In the first part of the study we investigate the influence of an intersection on the velocity and concentration fields in the adjoining streets; we show that the immediate influence of the intersection extends within the adjoining streets, to a distance of the order of the characteristic size of the streets. A large recirculating vortex is formed at the entrance to the cross-wind streets, and this determines the exchange of pollutants between the streets and the intersection. For some wind directions the average velocity in the street segment between intersections is the same as that which occurs in an infinitely long street with the same wind, but for other angles the average velocity in the finite-length street is significantly lower. The average concentration along a finite-length street is significantly different from that observed in an infinitely long street. In the second part of the study we investigate how the pollutant fluxes in the incoming streets are redistributed amongst the outgoing streets. An analysis of the mean streamlines shows that the flows remain relatively planar, with little variation over the vertical, and we have exploited this result to develop a simple operational model for the redistribution of pollutant fluxes within the intersection. This model has been further adapted to take account of the influence of fluctuations in wind direction over typical averaging periods. The resulting model is used in the street network model SIRANE.  相似文献   

13.
Black carbon (BC), a constituent of particulate matter, is emitted from multiple combustion sources, complicating determination of contributions from individual sources or source categories from monitoring data. In close proximity to an airport, this may include aircraft emissions, other emissions on the airport grounds, and nearby major roadways, and it would be valuable to determine the factors most strongly related to measured BC concentrations. In this study, continuous BC concentrations were measured at five monitoring sites in proximity to a small regional airport in Warwick, Rhode Island from July 2005 to August 2006. Regression was used to model the relative contributions of aircraft and related sources, using real-time flight activity (departures and arrivals) and meteorological data, including mixing height, wind speed and direction. The latter two were included as a nonparametric smooth spatial term using thin-plate splines applied to wind velocity vectors and fit in a linear mixed model framework. Standard errors were computed using a moving-block bootstrap to account for temporal autocorrelation. Results suggest significant positive associations between hourly departures and arrivals at the airport and BC concentrations within the community, with departures having a more substantial impact. Generalized Additive Models for wind speed and direction were consistent with significant contributions from the airport, major highway, and multiple local roads. Additionally, inverse mixing height, temperature, precipitation, and at one location relative humidity, were associated with BC concentrations. Median contribution estimates indicate that aircraft departures and arrivals (and other sources coincident in space and time) contribute to approximately 24–28% of the BC concentrations at the monitoring sites in the community. Our analysis demonstrated that a regression-based approach with detailed meteorological and source characterization can provide insights about source contributions, which could be used to devise control strategies or to provide monitor-based comparisons with source-specific atmospheric dispersion models.  相似文献   

14.
In this paper we present the development and application of a model for indoor air quality. The model represents a departure from the standard box models typically used for indoor environments which has applicability in residences and office buildings. The model has been developed for a physical system consisting of sequential compartments which communicate only with adjacent compartments. Each compartment may contain various source and sink terms for a pollutant as well as leakage, and air transfer from adjacent compartments. The mathematical derivation affords rapid calculation of equilibrium concentrations in an essentially unlimited number of compartments. The model has been applied to air quality in the passenger cabin of three commercial aircraft. Simulations have been performed for environmental tobacco smoke (ETS) under two scenarios, CO2 and water vapor. Additionally, concentrations in one aircraft have been simulated under conditions different from the standard configuration. Results of the simulations suggest the potential for elevated concentrations of ETS in smoking sections of non-air-recirculating aircraft and throughout the aircraft when air is recirculated. Concentrations of CO2 and water vapor are consistent with expected results. We conclude that this model may be a useful tool in understanding indoor air quality in general and on aircraft in particular.  相似文献   

15.
Urban air pollutant concentration data often tend to fit a two-parameter averaging-time model having three characteristics: (1) pollutant concentrations are (two-parameter) lognormally distributed for all averaging times; (2) median concentrations are proportional to averaging time raised to an exponent; and (3) maximum concentrations are approximately inversely proportional to averaging time raised to an exponent. Concentration data obtained near many isolated point sources and in some urban areas often do not fit a two-parameter lognormal distribution. An increment (either positive or negative) can be added to each such concentration in order to fit the data instead to a three-parameter lognormal distribution. This increment has been incorporated as the third parameter in a new three-parameter averaging-time model that can be used in both point-source and urban settings. Examples show how this new model can be used to analyze SO2 concentration data obtained near a point source to determine the degree of emission reduction needed to achieve the national ambient air quality standards.  相似文献   

16.
通过焉耆盆地石油开发区石油污染物水环境污染途径特点的分析 ,认为落地油将通过风蚀作用由大气传输以降尘的形式落入水体 ,对水环境产生影响。本文以土壤侵蚀的风洞实验求得污染源源强 ,采用高斯模式对地表风蚀作用的传输量进行估算 ,进而对石油开发区落地油通过大气传输途径对区域水环境 (博斯腾湖 )的影响进行了预测 ,建立了相应的模型。为人们了解干旱区石油污染物风蚀作用水环境污染影响提供了初步依据 ,对干旱区湖泊石油污染的全面防治提供了科学范式  相似文献   

17.
Low wind scenarios are associated with the worst air pollution episodes in urban street canyons. Under these conditions, operational dispersion models often over-predict pollutant concentration. Traffic-producing turbulence (TPT) becomes dominant in mixing and diluting traffic-related pollutants under low wind speed conditions. Determining the TPT effect on the flow and dispersion patterns within urban street canyons is crucial for the development of detailed operational dispersion models for assessing urban air quality. Several spatially averaged TPT formulations have been recently proposed in the literature. However, only a few attempts have been made so far to incorporate different TPT schemes into operational dispersion models and evaluate their performance using measurements.In this paper, several TPT schemes presented in literature were evaluated. Two TPT schemes were implemented in the well-validated Windows version of the Danish Operational Street Pollution Model (WinOSPM). Both formulations were evaluated using six independent datasets of roadside CO concentrations collected in European cities. Statistical and sensitivity analyses were undertaken to test the performance of the different formulations. The results showed that the overall model performance was significantly sensitive to the TPT schemes adopted. The model performance improved when a detailed characterisation of the TPT, depending on the density of road traffic, was used.  相似文献   

18.
Urban ambient air quality trend analysis was evaluated as an alternative to rollback analysis to estimate vehicle emission standards needed to achieve national ambient air quality standards. Examination of the trends of monthly maximum 8 hour average carbon monoxide concentrations, central business district traffic activity, and emission rates from vehicles on the road suggests that the automotive exhaust emission standard for carbon monoxide derived in response to the requirements of the Clean Air Act Amendments of 1970 may be ten times too severe. The excessive stringency of the vehicle emission standard for carbon monoxide was confirmed by two different analyses of the correlation between annual mean carbon monoxide concentration and frequency of occurrence of carbon monoxide concentrations above the level of the 8-hour standard. One correlation analysis using all available CAMP data involved an empirical approach and the other assumed that carbon monoxide concentrations are described by the lognormal distribution. Based on the analysis of CAMP air quality data, a vehicle carbon monoxide emission standard of approximately 29 grams per mile appears adequate to meet the ambient air quality standard. The large difference between the results of this analysis and the 1976 Federal vehicle carbon monoxide emission standard indicates the advisability of applying this methodology to verification of the standards for hydrocarbons and oxides of nitrogen.  相似文献   

19.
Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105–8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean dispersion are shown to produce results several orders of magnitude more efficiently with a loss of accuracy small compared to the absolute accuracy of advanced dispersion models near sources. The method can be readily incorporated into existing dispersion models, and may allow for additional computation time to be expended on modelling dispersion processes more accurately in future, rather than on accounting for source geometry.  相似文献   

20.
Acute leaf injury data are analyzed for 19 plant species exposed to ozone or sulfur dioxide. The data can be depicted by a new leaf injury mathematical model with two characteristics: (1) a constant percentage of leaf surface is injured by an air pollutant concentration that is inversely proportional to exposure duration raised to an exponent; (2) for a given exposure duration, the percent leaf injury as a function of pollutant concentration tends to fit a lognormal frequency distribution. Leaf injury as a function of laboratory exposure duration is modeled and compared with ambient air pollutant concentration measurements for various averaging times to determine which exposure durations are probably most important for setting ambient air quality standards to prevent or reduce visible leaf injury. The 8 hour average appears to be most important for most of the plants investigated for most sites, 1 hr concentrations are important for most plants at a few sites, and 3 hr S02 concentrations are important for some plants, especially those exposed to isolated point sources of the pollutant. The 1, 3, and 8 hr threshold injury concentrations are listed for each of the 19 plant species studied. To prevent or reduce acute leaf injury, fixed, nonoverlapping ambient air quality measurements and standards are recommended for averaging times of 1, 3, and 8hr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号