首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

It is important to understand the effects of emission controls on concentrations of ozone, fine particulate matter (PM2.5), and hazardous air pollutants (HAPs) simultaneously, to evaluate the full range of health, ecosystem, and economic effects. Until recently, the capability to simultaneously evaluate interrelated atmospheric pollutants (“one atmosphere” analysis) was unavailable to air quality managers. In this work, we use an air quality model to examine the potential effect of three emission reductions on concentrations of ozone, PM2.5, and four important HAPs (formaldehyde, acetaldehyde, acrolein, and benzene) over a domain centered on Philadelphia for 12-day episodes in July and January 2001. Although NOx controls are predicted to benefit PM2.5 concentrations and sometimes benefit ozone, they have only a small effect on formaldehyde, slightly increase acetaldehyde and acrolein, and have no effect on benzene in the July episode. Concentrations of all pollutants except benzene increase slightly with NOx controls in the January simulation. Volatile organic compound controls alone are found to have a small effect on ozone and PM2.5, a less than linear effect on decreasing aldehydes, and an approximately linear effect on acrolein and benzene in summer, but a slightly larger than linear effect on aldehydes and acrolein in winter. These simulations indicate the difficulty in assessing how toxic air pollutants might respond to emission reductions aimed at decreasing criteria pollutants such as ozone and PM2.5.  相似文献   

2.
The information presented in this paper is concerned with the effects of ambient ozone on crop yield reduction and the resultant economic losses. Yield data for nine crops within the South Coast Air Basin (SCAB) of California were obtained for the 12-year period, 1964 through 1975. Ozone concentrations, temperature, precipitation, and relative humidity data were related to the yields by using regression models. Estimated yield reductions due to ozone for 1975, varied from zero to 57% depending on crop and location. Economic welfare losses calculated from the yield reductions were $57.3 and $45.7 million for producer’s and consumer’s surplus, respectively. The total loss from ozone to agriculture related economic sectors determined by input-output analysis was $276 million in the SCAB and $36.6 million in the remainder of the state.  相似文献   

3.
The current literature on the role of sulfur dioxide in air pollution  相似文献   

4.
A collaborative test was conducted to determine the precision of the chemiluminescent method which has been specified for measuring ozone, to determine photochemical oxidant. Ten laboratories participated in a test involving the analysis of an urban atmosphere containing a photochemical smog mixture. Ozone generators were used to increase the O3 level over that naturally occurring, in order to cover an adequate range of concentrations. The range tested was 0 to 0.5 ppm.

A statistical analysis of the data obtained was used to derive equations for within laboratory and between laboratory standard deviations. In order to evaluate sampling data, these equations can be used in various statistical procedures to estimate repeatability, reproducibility, lower detectable limit, and other measures that establish the precision of the method.

Using specific definitions for repeatability and reproducibility, the following approximate estimates were obtained in the range of zero to 0.5 ppm:

Repeatability—0.01 to 0.04 ppm (varies with concentration, linear).

Reproducibility—0.01 to 0.09 ppm (varies with concentration, non-linear).

The lower detectable limit depends on instrumental and other variables, and cannot be specified precisely. Under typical assumptions, this limit can be estimated at between 0.006 and 0.009 ppm.  相似文献   

5.
A discussion of the methods used to determine the most economic design of chimney for a new thermal power station or large industrial plant is presented, with the objective that ground level concentration of pollutants will be kept at a minimum. Attention is paid to the geography and climatology of the site, with special reference to the frequency and height of inversions and the prevailing wind direction and speed.

A method is illustrated in using a large thermal power station as an example. The maximum sulfur dioxide concentrations at ground level are computed for several chimney heights and gas exit velocities. The values of these sulfur dioxide concentrations, the capital cost of the chimney, the pumping costs, and the gas pressures within the chimney are considered in selecting a suitable chimney height and a gas exit velocity which will meet most economically the stated objective.

The paper deals primarily with chimneys for industrial or power boiler plant of maximum continuous rating greater than 450 million Btu/hr (about 450,000 lbs of steam/hr), or to chimneys serving furnaces burning fuel at a maximum rate greater than 50,000 lbs/hr of coal, or 80,000 lbs/hr of oil. For chimneys serving plant with smaller heat inputs, chimney selection by reference to Clean Air Act 1956, Memorandum on Chimney Heights is suggested.  相似文献   

6.
Comparisons were made of the levels of six air pollutants—total oxidant, per-oxyacetyl nitrate (PAN), nitric oxide, nitrogen dioxide, carbon monoxide, and particulate matter—outside and inside 11 buildings in the South Coast Basin of California during summer and fall.

Total oxidant levels inside depend upon how much outside air is being brought in and the residence time in the structure. With rapid intake and circulation, levels inside may be two-thirds those outside. With little intake and slow circulation, amounts inside decay to near zero. PAN is more persistent in buildings because it is more stable than ozone but also decays to low levels over an extended period. Oxides of nitrogen and CO are much more stable than oxidant or PAN and when carried into buildings remain until diluted or exhausted.

Particulate matter levels indoors depend largely upon velocity of air movement. Indoor areas where foot traffic was light or which had low ventilation rates had reduced amounts of particulate. Electrostatic precipitators were much more effective than coarse primary filters used in many buildings for removing particulate matter.  相似文献   

7.
8.
9.
10.
11.
Currently available compilations of methods of air analysis are listed. Collaborative testing is urgently needed to reconcile differences and to demonstrate the accuracy of these methods. The Analytical Methods Evaluation Service of the National Center for Air Pollution Control conducted a survey of the instruments and manual methods of analysis in use. Responses are tabulated from about 80 laboratories, in 28 states and 3 foreign countries. Sulfur dioxide was the most widely measured pollutant. The first collaborative study organized by the Analytical Methods Evaluation Service is described. The purpose was to evaluate the permeation tube technique as a primary standard method for generating known sulfur dioxide concentrations for instrument calibration and methods testing. Although a good beginning has been made, the testing of methods for measuring air pollutants has barely begun.  相似文献   

12.
Current regulatory policies for hazardous air pollutants (HAPs) target the sources of direct emissions. In addition to direct emissions, some of the aromatic, nitrogenated, and oxygenated HAPs can be formed in the atmosphere. Formaldehyde and acetaldehyde, in particular, are produced by almost every hydrocarbon photooxidation reaction. Estimates have been made that, in some urban areas, in situ formation contributes as much as 85 percent of the ambient levels of formaldehyde and 95 percent for acetaldehyde. Over 40 percent of the HAPs being regulated under Title III of the 1990 Clean Air Act Amendments have atmospheric lifetimes of less than one day. The transformation products of these HAPs with low atmospheric persistence are important for assessing risks to human health, especially for cases where the transformation products are more toxic than the HAP itself.  相似文献   

13.
A statistically designed laboratory study to assess both direct and synergistic effects of air pollutants and other environmental factors on six different classes of materials was recently completed.1 One of the material classes was dyed textile fabrics. Drapery fabrics were specifically selected because they are economically important, are designed to have a fairly long life, and are subject to atmospheric fading. In fact, fading, whether caused by sunlight, pollution or both, frequently limits the useful life of draperies.  相似文献   

14.
ABSTRACT

In this paper, assumptions regarding future land use as a key uncertainty is considered and its impact on risk analysis for contaminated sites is assessed. Risks are assessed for two land use scenarios (current-use industrial and future-use residential) using probabilistic models that incorporate uncertainty and variability in the exposure parameters. Residual risks are calculated for both industrial and residential cleanup standards. A Superfund site in northern California is considered.

In general, for the unremediated case, the future-use residential scenarios produce larger risks (1 to 3 orders of magnitude) than current- (continued) use industrial scenarios. For the Superfund site studied, the residual risks calculated for the remedy selected was not sufficiently protective of future-use residents in that it did not meet .S. Environmental Protection Agency (EPA) risk goals, but was protective of current-use workers, even though the cleanup criteria were based on residential use. Alternative risk management practices, such as deed restrictions, can be used in such cases.  相似文献   

15.
16.
ABSTRACT

Passage of the 1990 Clean Air Act Amendments launched the Acid Rain Program in the United States. This initiative, based on the market mechanism of a sulfur dioxide tradable “allowance” system, was a dramatic departure from traditional command and control strategies designed to reduce air pollution emissions. Power plant managers have flexibility under the program to select and implement a variety of options to reduce emissions below mandated levels. Federal agencies have collected annual performance data for affected facilities covered by the program for a number of years. Coal-burning plants are typically greater generators of sulfur dioxide (SO2) than oil burners of equivalent size. This study examined the effect of fuel type as a significant factor influencing a plant's achievement in reducing pollution emissions. Achievement was measured by using a derived variable, delta (A), defined as the difference between pounds of SO2 produced divided by the energy (in million Btu) generated, for the years 1990 and 1995. Rigorous nonparametric statistical analyses were used to compare the two populations of coal-fired and oil-fired plants. Results indicated that coal-burning facilities achieved greater program success, measured by the expected value of delta, than the oil combustors for the five-year period reviewed. Since utility managers must take steps to ensure all applicable requirements of the program are met, findings of the inquiry should prove to be useful in assessing achievable emissions reductions and aid in long-range facility planning.  相似文献   

17.
An AEI-MS9 high resolution mass spectrometer interfaced with a PDP-12 digital computer has been adapted for the multicomponent analysis of air pollutants. Air sampling techniques for particulate and gaseous pollutants have been developed which are compatible with the mass spectrometric system. A single stage impactor has been designed for sampling particulate matter of particle diameters greater than 1–2 μm. The remainder of the particulate matter is collected on a glass fiber filter. Gaseous pollutants are collected on a styrene-divinylbenzene copolymer (Chromosorb 102).

The particulate samples are introduced directly into the mass spectrometer utilizing a temperature programed insertion probe. Gaseous pollutants are desorbed from the copolymer directly into the mass spectrometer by heating. Analysis of composite mass spectral data is facilitated through the use of a digital computer utilizing newly developed computer programs. Final computer output yields qualitative and quantitative results for up to 300 pollutants. Organic pollutants identified in particulate matter include polycyclic aromatic compounds, alkyl chlorides, polychlorinated aromatics, substituted benzenes and organic acids. Composite quantitative results are reported for alkanes and alkenes in the following groups: C15-C30, C30-C50 and Cso-polymeric. Inorganic pollutants identified include As4O6, H2SO4/ (NH4)2SO4, (NH4)2SO3, NaHSO4, NH4NO3/ NaNO3, NH4CI, SeO2, I2, elemental sulfur, and elemental cadmium.  相似文献   

18.
An air pollution monitoring biological indicator (AMBI) system for ambient ozone was tested in the South Coast Air Basin of California during the 1972 fall growing season. The basic unit or AMBI station was an inexpensive, portable plant station which operated independent of power sources. Reliability of these units was excellent as only three instances of missing data were observed from 330 possibilities. A photo-reference system of ozone injury evaluation utilizing direct comparisons of injured leaves with reference photographs was successful in standardizing assessments of ozone injury. Average weekly injury indices for field locations were correlated with average weekly ozone dosages and were found to be significant at the .01 level.  相似文献   

19.
Concentration profiles for hydrogen fluoride(HF), sulfur dioxide(SO2), ozone (O3), nitrogen dioxide(NO2), and nitric oxide(NO) generated in a standardized alfalfa canopy are presented. Wind, light, temperature, and carbon dioxide(CO2) profiles, canopy pollutant uptake rates, and canopy structural data are also given. Canopy pollutant concentration profile characteristics were studied to evaluate the relative potentials for major air pollutants to penetrate into canopies. The study was conducted in an environmental growth chamber equipped to control automatically environmental conditions and monitor continuously gas exchange rates. HF, SO2, and NO2 profiles suggested that these gases were removed efficiently by the upper portion of the canopy as well as by the immediate subsurface vegetation. The steady state HF profile showed the greatest displacement within the canopy. The NO profile was displaced the least. The uptake rate of NO by plants was apparently too slow in comparison with gas transport and mixing within the canopy to affect the internal profile substantially. O3 appeared to be readily deposited on the surface tissues, but the deeper tissues in the canopy had less effect on the concentration profile. Data are also presented to show the relationship between NO2 concentration within the canopy and changes in the air concentration above the vegetation. The results indicated that gas transport between the atmosphere and canopy interior was rapid. The data presented should be of current interest to agriculturists, researchers, administrators, and environmental planners concerned with effects of air pollutants on plants and on the fate of pollutants in the microenvironment.  相似文献   

20.
The statistical distribution of air pollutants in Sofia has been investigated. It was established that the distribution is not normal. Application of logarithmic transformation brings the distributions closer to the log-normal, but does not completely normalize them. All of the distributions have considerable skewness and excess which remain after the logarithmic transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号