首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
This publication concerns the dry removal of SO2 from gases using limestone absorbents. It reports bench-scale experiments made with commercial samples of powdered limestone (CaCO3) activated by addition of a cheap substance, namely CaCl2. The absorption was carried out in a fluidized bed traversed by the flue gases, between 600° and 900° C. The degree and rate of transformation of CaCO3 to CaSO4 in the presence of SO2 and air have been compared for unmodified and modified absorbents. Initial rates of reaction, and the variation of the rate of absorption with time have been measured. The influence of the SO2 content of the gas has been assessed. At 700° C, the maximum degree of transformation of activated limestone to sulfate exceeds 90%, whereas untreated CaCO3 transforms only to 16–20%. At the same temperature, more than 90% of SO2 contained In a gas carrying 0.35% SO2 is removed. Because of the much smaller quantity of solid absorbent required, dry absorption processes based on the modified absorbents might get renewed interest. The modified absorbents might also be used for in situ absorption in fluidized bed combustion, in which the temperatures are in the range studied in the present paper.  相似文献   

2.
A procedure was developed for the 24-h determination of SO2 and CO2 in effluent gas from fossil fuel combustion sources. Laboratory experiments were conducted to test absorption of SO2 in hydrogen peroxide solution and absorption of CO2 by sodium hydroxide on an inert substrate at expected ambient temperatures of 15 to 45°C. Isopropyl alcohol cannot be used to trap sulfuric acid and particulates because it permeates the sampling train and prevents complete absorption of CO2. Elemental analysis of stack particulates revealed that at least 31 elements were present. Iron and other elements interfered with SO2 analysis. These particulates were completely removed by a heated borosilicate glass filter. Both laboratory and field experiments showed that molecular sieves are a promising alternative for CO2 absorption. Statistical evaluation of data collected at three units equipped with flue gas desulfurization scrubbers proved that the new procedure is accurate and precise.  相似文献   

3.
The interaction of a typical flue gas with active charcoal and bituminous coal char at temperatures between 600 and 800°C and atmospheric pressure has been studied. The SO2 in the flue gas interacts with the carbon to form primarily H2S, COS, and a carbon-sulfur surface complex. H2S and COS break through the carbon bed much in advance of SO2. At 800°C, sulfur retention on the bed exceeds at least 11% before SO2 breakthrough occurs. The reaction of H2S and COS with O2 over active charcoal at 100–140°C to produce sulfur, which deposits on the carbon, has also been studied and found to be feasible. As a result of this study, a new process is outlined for the removal of SO2 from flue gas, with the ultimate conversion  相似文献   

4.

Ni-Co bimetallic catalysts supported on coconut shell activated carbon are synthesized using solid-phase method and investigated for dry reforming of methane, to explore the impact of Ni:Co ratio on the catalyst activity and stability. The catalyst performances are evaluated under the temperature varying from 600 to 900 °C and gas hourly space velocity (GHSV) of 7200 mL/h·g-cat. The characterization results show that metal nanoparticles are produced on the support, and the bimetallic catalyst with an explicit Ni:Co ratio (2:1) is the most beneficial for metal particle dispersion and acquires the minimum particle size of 4.41 nm. The bimetallic catalysts with an explicit Ni:Co ratio of 1:2 and 1:1 exhibit a synergistic effect towards the conversions of CH4 and CO2, respectively. The experimental results reveal that the highest CH4 and CO2 conversions rise to 94.0% and 97.5% within 12 h at 900 °C on average, respectively, assisted with the two bimetallic catalysts. The intensity of disordered carbon and thermal stability are enhanced with the extension of reforming process, contributing to a long-term catalytic stability. Besides, no obvious carbon deposition is detected, leading to a highly catalytic stability for the bimetallic catalysts.

  相似文献   

5.
The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbents for flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a laboratory scale grinder prior to slurring in order to decrease the slurring time needed for the sorbent to be reactive with SO2. Reactivity of ADVACATE sorbents with SO2 in the bench-scale reactor correlated with their surface area.

ADVACATE sorbents produced with ground fly ash were evaluated in the 50 cfm (85 m3/h) pilot plant providing 2 s duct residence time. ADVACATE sorbent was produced by slurrying ground fly ash (median particle size of 4.3 µm) with Ca(OH)2 at the weight ratio of 3:1 at 90°C (194°F) for 3hto yield solids with 30 weight percent of initial free moisture. When this sorbent was injected into the duct with 1500 ppm SO2 and at 11°C (20°F) approach to saturation, the measured SO2 removal was approximately 60percent at a Ca/S stoichiometric ratio of 2. Previously, when ADVACATE sorbent was produced at 90°C (194°F) and at the same fly-ash-to-Ca(OH)2 weight ratio using unground fly ash, removal under the same conditions in the duct was approximately 50 percent following 12 h slurring. The report presents the results of pilot-scale recycle tests at the recycle ratio of 2. Finally, the report discusses future U.S. Environmental Protection Agency plans for commercialization of ADVACATE.  相似文献   

6.
EPA’s efforts to develop low cost, retrofitable flue gas cleaning technology include the development of highly reactive sorbents. Recent work addressing lime enhancement and testing at the bench-scale followed by evaluation of the more promising sorbents in a pilot plant are discussed here.

The conversion of Ca(OH)2 with SO2 increased several-fold compared with Ca(OH)2 alone when Ca(OH)2 was slurrled with fly ash first and later exposed to SO2 in a laboratory packed bed reactor. Ca(OH)2 enhancement increased with the increased fly ash amount. Dlatomaceous earths were very effective reactivity promoters of lime-based sorbents. Differential scanning calorimetry of the promoted sorbents revealed the formation of a new phase (calcium silicate hydrates) after hydration, which may be the basis for the observed Improved SO2 capture.

Fly ash/lime and diatomaceous earth/lime sorbents were tested in a 100 m3/h pilot facility incorporating a gas humidifier, a sorbent duct injection system, and a baghouse. The inlet SO2 concentration range was 1000-2500 ppm. With once-through dry sorbent injection into the humidified flue gas [approach to saturation 10–20°C (18–36°F) in the baghouse], the total SO2 removal ranged from 50 to 90 percent for a stoichiometric ratio of 1 to 2. Recycling the collected solids resulted in a total lime utilization exceeding 80–90 percent. Increased lime utilization was also investigated by the use of additives.  相似文献   

7.
Several wet chemical methods have been used or suggested for the determination of SO2 concentrations in air pollution work. These include the iron-O-phenanthroline procedure reported by Stephens and Lindstrom, the Scaringelli-modified West-Gaeke method and the Schulze method. This paper describes a laboratory study to evaluate the usefulness of the iron-o-phenanthroline procedure and is directed to individuals concerned with the analysis of gases from the exhaust of gas turbine engines and other combustion processes, including stationary power plants. The variables considered were: range of usefulness in terms of concentration of SO2, efficiency of collection, effect of contaminants, specifically oxides of nitrogen, olefin and aldehyde and effect of storage prior to spectrophctometric measurement. The Stephens-Lindstrom method was found to be suitable for measuring higher levels of SO2 concentrations. It can accurately measure amounts totalling 6000 µl of SO2 and above whereas the other mentioned methods are generally used for lower levels. Collection efficiency was satisfactory. Contaminants, particularly oxides of nitrogen, are a problem only at low levels of SO2. NO2 interference may be eliminated by absorption of the NO2 on Ultraport S impregnated with ANEDA/H2SO4 solution. Temperature control during SO2 addition is necessary. Storage of exposed reagents prior to measurement produce only small errors if stored at 0°C or at room temperature.  相似文献   

8.
The plume opacity and droplet diameters of a monodisperse sulfuric acid aerosol were calculated as a function of the initial H2SO4 concentration, initial H2O concentration and final gas temperature after cooling from an original stack gas temperature of 300°C. Calculation assumptions include heterogeneous heteromolecular condensation of H2SO4 and H2O onto monodisperse nuclei of 0.05 μm dia., three aerosol particle nuclei concentrations of 106, 107 and 108 cm−3 (at 300°C and 760 mm Hg); and a stack or plume diameter of 6 m. The calculated results show that for the conditions considered and with the stack temperatures in excess of 125°C, initial H2SO4 stack gas concentrations of 10ppm or less will result in calculated opacities of less than 20 % for a plume diameter of 6 m. The results show that the calculated opacity is significantly affected by the initial H2SO4 and initial H2O concentrations and the final gas temperature. The increases in the calculated opacities upon cooling of the stack gases are similar in general to the increases in the measured opacities between instack and outstack reported by Nader and Conner (1978) for an oil-fired boiler.  相似文献   

9.
The influence of nitric acid (HNO3) on the atmospheric corrosion of copper, zinc and carbon steel was investigated in laboratory exposures at 65% relative humidity (RH), 25 °C and 0.03 cm s−1 air velocity. The deposition velocity (Vd) of HNO3 on the specimens, the corrosion rates and corrosion products were determined by gravimetry, ion chromatography, X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) microspectroscopy. Comparisons were also made with literature data on the corrosion effects of sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3).At 65% RH, the Vd of HNO3 on all metals was at least 70% of that of an ideal absorbent, i.e., an impregnated filter with perfect absorption for HNO3. The Vd of HNO3 was much higher than that of SO2, NO2 or O3, which is mainly attributed to the relatively high sticking coefficient, high solubility and high reactivity of HNO3 compared to the other gases. During identical exposures to HNO3, the corrosion rate of carbon steel was nearly three times higher than that of copper or zinc. However, when comparing the corrosion effects induced by HNO3 with those induced by SO2 alone or in combination with either NO2 or O3, HNO3 turned out to be far more aggressive than SO2. Relative to SO2, zinc is the metal most sensitive to HNO3, followed by copper and with carbon steel least sensitive to HNO3.  相似文献   

10.
The Bureau of Mines prepared three sintered materials capable of removing H2S from producer gas at 1000° to 1500°F. They are mixtures of ferric oxide and fly ash, ferric oxide and pumice stone, and red mud (a ferric oxide-containing residue from processing bauxite). All three absorbents were virtually completely regenerable with air. A sintered Fe2O3; (25%)-fly ash [75%) mixture was tested through nine H2S absorption-air regeneration cycles without loss of absorplion capacity or attrition of the pellets. The absorbent with the greatest capacity was a red mud, absorbing 16.0% by weight of sulfur at 1000° F, 24.0% at 1250° F, and 45.1 % at 1 500° F.  相似文献   

11.
ABSTRACT

Rates of nitrogen dioxide (NO2) absorption and sulfide oxidation were measured in a highly characterized stirred cell contactor at 55 °C, with O2 present in the gas phase. The rate constant of the reaction between NO2 and sul-fide at 55 °C was determined to be 26.4 x105 M-1sec-1. A reaction mechanism was proposed that is consistent with the kinetic data. NO2 absorption initiates sulfide oxidation in the presence of oxygen. The rate of sulfide oxidation increased with sulfide and oxygen concentration and with the rate of NO2 absorption. Furthermore, thiosulfate was an effective inhibitor of sulfide oxidation.  相似文献   

12.
Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 °C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 °C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas.
ImplicationsSimultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs.  相似文献   

13.
ABSTRACT

A case study was conducted to evaluate the SO2 emission reduction in a power plant in Central Mexico, as a result of the shifting of fuel oil to natural gas. Emissions of criteria pollutants, greenhouse gases, organic and inorganic toxics were estimated based on a 2010 report of hourly fuel oil consumption at the “Francisco Pérez Ríos” power plant in Tula, Mexico. For SO2, the dispersion of these emissions was assessed with the CALPUFF dispersion model. Emissions reductions of > 99% for SO2, PM and Pb, as well as reductions >50% for organic and inorganic toxics were observed when simulating the use of natural gas. Maximum annual (993 µg/m3) and monthly average SO2 concentrations were simulated during the cold-dry period (152–1063 µg/m3), and warm-dry period (239–432 µg/m3). Dispersion model results and those from Mexico City’s air quality forecasting system showed that SO2 emissions from the power plant affect the north of Mexico City in the cold-dry period. The evaluation of model estimates with 24 hr SO2 measured concentrations at Tepeji del Rio suggests that the combination of observations and dispersion models are useful in assessing the reduction of SO2 emissions due to shifting in fuels. Being SO2 a major precursor of acid rain, high transported sulfate concentrations are of concern and low pH values have been reported in the south of Mexico City, indicating that secondary SO2 products emitted in the power plant can be transported to Mexico City under specific atmospheric conditions.

Implications: Although the surroundings of a power plant located north of Mexico City receives most of the direct SO2 impact from fuel oil emissions, the plume is dispersed and advected to the Mexico City metropolitan area, where its secondary products may cause acid rain. The use of cleaner fuels may assure significant SO2 reductions in the plant emissions and consequent acid rain presence in nearby populated cities and should be compulsory in critical areas to comply with annual emission limits and health standards.  相似文献   

14.
Novel silica-enhanced lime sorbents were tested in a bench-scale sand-bed reactor for their potential for SO2 removal from flue gas. Reactor conditions were 64°C (147°F), relative humidity of 60 percent [corresponding to an approach to saturation temperature of 10°C (18°F)], and inlet SO2 concentration of 500 or 1000 ppm. The sorbents were prepared by pressure hydration of CaO or Ca(OH)2 with siliceous materials at 100°C (101 kPa) [212°F (14.7 psi)] to 230°C (2793 kPa) [446°F (405 psi)] for 15 min to 4 h. Pressure hydration fostered the formation of a sorbent reactive with SO2 from fly ash and Ca(OH)2 in a much shorter time than did atmospheric hydration. The conversion of Ca(OH)2 in the sand-bed reactor increased with the increasing weight ratio of fly ash to lime and correlated well with B.E.T. surface area, increasing with increasing surface area. The optimum temperature range for the pressure-hydration of fly ash with Ca(OH)2 was between 110 and 160°C (230 and 320 °F). The pressure hydration of diatomaceous earth with CaO did not offer significant reactivity advantages over atmospheric hydration; however, the rate of enhancement of Ca(OH)2 conversions was much faster with pressure hydration. Scanning electron microscope (SEM) and x-ray diffraction studies showed solids of different morphology with different fly ash/lime ratios and changing conditions of pressure hydration.  相似文献   

15.
Abstract

The removal of sulfur dioxide (SO2) from simulated flue gases streams (N2/O2/H2O/SO2) was experimentally investigated using microgap discharge. In the experiment, the thinner dielectric layers of aluminum oxide (Al2O3) were used to form the microgap discharge. With this physical method, a high concentration of hydroxyl (OH·) radicals were produced using the ionization of O2 and H2O to further the conversion of SO2 into sulfuric acid (H2SO4) at 120° C in the absence of any catalysts and absorbents, which were captured with the electrostatic precipitator (ESP). As a result, the increase of discharge power and concentrations of O2 and H2O increased the production of OH· radicals resulting in enhanced removal of SO2 from gas streams. With the test and analysis, a number of H2SO4 droplets were produced in experiment. Therefore, a new method for removal of SO2 in semidry method without ammonia (NH3) additive was found.  相似文献   

16.
The body of Information presented in this paper is directed to those Individuals concerned with the removal of NOx in combustion flue gases. A catalytic process for the selective reduction of nitrogen oxides by ammonia has been investigated. Efforts were made toward the development of catalysts resistant to SOx poisoning. Nitrogen oxides were reduced over various metal oxide catalysts in the presence or absence of SOx(SO2 and SO3). Catalysts consisting of oxides of base metals (for example, Fe2O3) were easily poisoned by SO3, forming sulfates of the base metals. A series of catalysts which are not susceptible to the SOx poisoning has been developed. The catalysts possess a high activity and selectivity over a wide range of temperatures, 250—450°C. The catalysts were tested in a pilot plant which treated a flue gas containing 110-150 ppm NOx, 660-750 ppm SO2, and 40-90 ppm SO3. The pilot plant was operated at 350°C and at a space velocity of 10,000 h-1. The removal of nitrogen oxides was more than 90% for several months.

A mechanism of the NO-NH3 reaction has also been investigated. It is found that NO reacts with NH3 at a 1:1 mole ratio in the presence of oxygen and the reaction is completely inhibited by the absence of oxygen. The experimental data show that the NO-NH3 reaction in the presence of oxygen is represented byNO + NH3 + 1/4 O2 = N2 + 3/2 H2O.  相似文献   

17.
ABSTRACT

This paper presents a technique for the complete, simultaneous decomposition of CO2, SO2, and NOx, as well as the simultaneous removal of fly ash by ultra-high voltage pulse activation. Ultra-high voltage narrow pulse is used to make the gases in the reactor become active molecules, which are then dissociated into nonpoisonous gas molecules and solid particles under the control of a directional reaction model. By using a sufficient charge and a strong electric field, the fly ash can be removed. It becomes the carrier of C and S, and its efficiency is 99.5%. Owing to the action of catalyst B (using Ni as the mother's body), the activation energy of CO2, SO2, and NOx gases is reduced in great magnitude, and their removal efficiency can reach 75~90% at normal pressure and 180 °C.  相似文献   

18.
The information presented in this paper is directed to engineers who are involved with environmental emissions from coal conversion plants. Synthetic sorbents were investigated as an alternative to natural sorbents (limestone) for the removal of SO2 from the combustion gas in a fluidized-bed coal combustor. The sulfation rate of a synthetic sorbent, CaO in α-AI2O3, was determined as a function of gas composition, temperature, and calcium concentration in the sorbent. The reaction was found to be diffusion-controlled above 850°C and kinetically controlled at lower temperatures. The physical characteristics of the support material have a major effect oh the sulfation kinetics. Porosity measurements indicated that supports containing large pores (>0.2 µm) produced sorbents having high sulfation rates and that pores with diameters less than 0.2 µm did not contribute significantly to the capture of SO2. The sorbents SrO in α-AI2O3 and BaO in α-AI2O3 had lower SO2 capture rates than did CaO in α-AI2O3. The alkali metal oxide sorbents K2O and Na2O in α-AI2O3 captured SO2 much faster than did the alkaline earth metal oxides.  相似文献   

19.
Abstract

The removal system for the absorption of CO2 with amines and NH3 is an advanced air pollution control device to reduce greenhouse gas emissions. Absorption of CO2 by amines and NH3 solutions was performed in this study to derive the reaction kinetics. The absorption of CO2 as encountered in flue gases into aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), and NH3 was carried out using a stirred vessel with a plane gas-liquid interface at 50 °C. Various operating parameters were tested to determine the effect of these variables on the absorption kinetics of the reactants in both gas and liquid phases and the effect of competitions between various reactants on the mass-transfer rate.

The observed absorption rate increases with increasing gas-liquid concentration, solvent concentration, temperature, and gas flow rate, but changes with the O2 concentration and pH value. The absorption efficiency of MEA is better than that of NH3 and DEA, but the absorption capacity of NH3 is the best. The active energies of the MEA and NH3 with CO2 are 33.19 and 40.09 kJ/mol, respectively.  相似文献   

20.
An environmental parameters study has examined the impact of indoor temperature (T) and relative humidity (RH) levels on formaldehyde (CH2O) concentrations inside two unoccupied research houses where the primary CH2O emitter is particleboard underlayment. The data were fit to a simple three-term, steady state model describing the T and RH dependence of CH2O concentration in a single compartment with a single CH2O emitter. The model incorporates an Arrhenius T dependence and a nonlinear RH dependence of the CH2O vapor concentration within the solid CH2O emitter. The RH dependence is based on Freundlich's theory of the adsorption of water vapor on solid surfaces. The model is used to estimate potential seasonal variation in CH2O concentrations under specified experimental conditions inside the research houses. The modeled results indicate six- to ninefold variation between 18°C, 20% RH and 32°C, 80% RH, simulating potential winter/summer conditions with minimal indoor climate control. In comparison, Indoor conditions ranging from 20°C, 30% RH to 26°C, 60% RH yielded approximate two- to fourfold fluctuations in CH2O concentration.

The research house data were also used to evaluate the limitations and applicability of more complex five-term models developed from small-scale chamber studies of the environmental dependence of CH2O emissions from particleboard underlayment. These models also incorporate a linear T and RH dependence of the CH2O transport rate through the CH2O emitter in addition to the T and RH dependence of the CH2O concentration within the emitter. Good correlation is observed between the results of the research house studies and 1) a selected (i.e., single) underlayment model over a broad range of environmental conditions and 2) a combined underlayment model over a restricted range of environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号