首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Particle size distributions, particulate concentrations, and particle identities must be known to relate effluents to reduction in visibility and soiling. Similar types of emissions were measured with cascade impactor, membrane filter, and rotorod samplers. The different particle size distributions, concentrations, and identifications are reported. Discussion of and recommendations for utilization of these three methods of sampling are made.  相似文献   

3.
The absorption efficiencies of 6–, 10–, IS–, and 60-turn spiral contact columns for two formulations of Saltzman reagent are evaluated for use in atmospheric nitrogen dioxide analyzers at several air and liquid flow rates. Response times for the several columns as a function of flow rates and absorbing reagent are also given. The recommended column and reagent are indicated. The technique of adjusting instrument parameters for direct readout of NO2 concentrations is described.  相似文献   

4.
The body of information presented in this paper is directed to those individuals concerned with methods for the sampling and measurement of fluorides contained in stack gases produced during the manufacture of phosphate fertilizer or aluminum. An air stream containing gaseous hydrogen fluoride (HF), at concentrations of from 87 to 1700 µg F m-3, was generated and passed through 193 to 198 cm lengths of Pyrex glass, type 316 stainless steel, TFE Teflon, and methyl methacrylate-coated aluminum probes at flow rates of 28 I min-1. HF passing through the probes was collected in deionized water contained in a Greenburg-Smith impinger. The Teflon probe exhibited no loss of HF and no trend toward increased passage of HF with time. Significant amounts of fluoride were lost in 18 out of 20 tests with the methacrylate probe and in 4 out of 20 tests with the Pyrex and stainless steel probes. Trends toward increased passage of HF with time occurred with the latter three probe materials. The selective ion electrode and semiautomated methods gave equivalent results when samples were made alkaline to avoid sorption of fluoride by Tygon tubing used in the semiautomated method. These results demonstrated that a Teflon probe gave the most representative sample of gaseous HF. However, additional tests are needed before a final recommendation is made for a probe to sample fluorides in stack gases.  相似文献   

5.
Tests were conducted to determine the limitations of glass fiber filters in sampling atmospheric hydrogen fluoride. Filters without latex binder were more efficient collectors than those with the binder. Up to 75 μg F/in.2 of filter area was collected by a single filter before the loss reached 5 percent. Two filters, one behind the other, collected over 250 μg F/in.2 of filter area before loss through them reached five percent. By controlling the sampling rate and time to avoid exceeding the saturation limit, it is possible to use glass fiber filters for sampling over a wide range of fluoride concentrations.  相似文献   

6.
Recent advances in the development of receptor-oriented source apportionment techniques (models) have provided a new approach to evaluating the performance of particulate dispersion models. Rather than limiting performance evaluations to comparisons of particulate mass, receptor model estimates of source impacts can be used to open new opportunities for in-depth analysis of dispersion model performance. Recent experiences in the joint application of receptor and dispersion models have proven valuable in developing increased confidence in source impact projections used for control strategy development. Airshed studies that have followed this approach have identified major errors in emission inventory data bases and provided technical support for modeling assumptions.

This paper focuses on the joint application of dispersion and receptor models to particulate source impact analysis and dispersion model performance and evaluation. The limitations and advantages of each form of modeling are reviewed and case studies are examined. The paper is offered to provide several new perspectives into the model evaluation process in the hope that they may prove useful to those that manage our nation’s air resources.  相似文献   

7.
Abstract

Odorous gases associated with livestock operations are complex mixtures of hundreds if not thousands of compounds. Research is needed to know how best to sample and analyze these compounds. The main objective of this research was to compare recoveries of a standard gas mixture of 11 odorous compounds from the Carboxen/PDMS 75–μm solid–phase microextraction fibers, polyvinyl fluo–ride (PVF; Tedlar), fluorinated ethylene propylene copolymer (FEP; Teflon), foil, and polyethylene terephthalate (PET; Melinex) air sampling bags, sorbent 2,b–diphenylene–oxide polymer resin (Tenax TA) tubes, and standard 6–L Stabilizer sampling canisters after sample storage for 0.5, 24, and 120 (for sorbent tubes only) hrs at room temperature. The standard gas mixture consisted of 7 volatile fatty acids (VFAs) from acetic to hexanoic, and 4 semivolatile organic compounds including p–cresol, indole, 4–ethylphenol, and 2'–aminoacetophenone with concentrations ranging from 5.1 ppb for indole to 1270 ppb for acetic acid. On average, SPME had the highest mean recovery for all 11 gases of 106.2%, and 98.3% for 0.5– and 24–hr sample storage time, respectively. This was followed by the Tenax TA sorbent tubes (94.8% and 88.3%) for 24 and 120 hr, respectively; PET bags (71.7% and 47.2%), FEP bags (75.4% and 39.4%), commercial Tedlar bags (67.6% and 22.7%), in–house–made Tedlar bags (47.3% and 37.4%), foil bags (16.4% and 4.3%), and canisters (4.2% and 0.5%), for 0.5 and 24 hr, respectively. VFAs had higher recoveries than semivolatile organic compounds for all of the bags and canisters. New FEP bags and new foil bags had the lowest and the highest amounts of chemical impurities, respectively. New commercial Tedlar bags had measurable concentrations of N,N–dimethyl acetamide and phenol. Foil bags had measurable concentrations of acetic, propionic, butyric, valeric, and hexanoic acids.  相似文献   

8.
Concern with the statistical precision associated with certain pollutant sampling schedules led to comparison of two sampling schemes, designated as “modified random” and “systematic” sampling methods. A nearly uninterrupted body of data representing six years of sampling provided a basis from which to perform hypothetical “sampling” by the two methods. Comparison of results shows that the systematic method generally gave better results. The method is very simple; ft entails the selection of a sampling interval (other than 7 days or multiple of 7), the selection (randomly) of an initial sampling date, and regular sampling at the selected interval thereafter.  相似文献   

9.
Sampling duration calculations   总被引:1,自引:0,他引:1  
Routine air quality monitoring produces filter samples that, when analyzed, yield the total amount of the aerosol present in the volume of air drawn by the pump in the monitoring device during the given sampling period. From this we obtain an average concentration of the aerosol for the given duration. The samples are therefore really aggregate samples. A natural question then is "what is the effect of the duration of aggregation on the accuracy and precision of the estimate of the quantity of interest?" The answer depends on a number of factors, such as the quantity that is being estimated: a mean, or an extreme value, or some other quantity; the nature of the measurement error--additive versus multiplicative; the costs of laboratory analyses, and so on. In this paper, we investigate these issues when the interest is in estimating the mean concentration of a specified aerosol species over a fixed time period. In particular, we propose a method for determining a sampling duration that will yield the "best estimate" of the mean concentration for a given cost whenever appropriate statistical assumptions hold.  相似文献   

10.
ABSTRACT

Routine air quality monitoring produces filter samples that, when analyzed, yield the total amount of the aerosol present in the volume of air drawn by the pump in the monitoring device during the given sampling period. From this we obtain an average concentration of the aerosol for the given duration. The samples are therefore really aggregate samples. A natural question then is “what is the effect of the duration of aggregation on the accuracy and precision of the estimate of the quantity of interest?” The answer depends on a number of factors, such as the quantity that is being estimated: a mean, or an extreme value, or some other quantity; the nature of the measurement error—additive versus multiplicative; the costs of laboratory analyses, and so on. In this paper, we investigate these issues when the interest is in estimating the mean concentration of a specified aerosol species over a fixed time period. In particular, we propose a method for determining a sampling duration that will yield the “best estimate” of the mean concentration for a given cost whenever appropriate statistical assumptions hold.  相似文献   

11.
The Brigham Young University (BYU) organic sampling system (BOSS) and the high flow rate multi-system BYU organic sampling system (BIG BOSS), which use multichannel diffusion denuder sampling techniques, were both used to collect samples of atmospheric fine particulate organic material. Both systems were used at the Meadview sampling site located at the western boundary of the Grand Canyon National Park in northwestern Arizona for the Project MOHAVE summer intensive sampling program in August 1992. The concentrations of total fine particulate carbonaceous material determined by temperature programmed volatilization for BOSS collocated replicate samples were in agreement with an uncertainty of ±14%. A comparable agreement was seen between the BOSS and BIG BOSS samples. Carbonaceous material collected by the second of two sequential quartz filters was shown to have originated from organic material lost from particles during sampling. About one-half of the fine particulate organic material was lost from particles during sample collection. These semi-volatile organic compounds lost from particles during sampling were characterized by GC/MS analysis. The concentrations of n-alkanes, n-fatty acids, n-fatty methyl esters, and phthalic acid as a function of fine particulate size were obtained for compounds both retained by and lost from particles during sampling. The possible sources of fine particulate semi-volatile organic material collected at Meadview, and the particle size distribution of fine particulate organic material, n-alkanes, n-fatty acids, and n-fatty esters are discussed.  相似文献   

12.
Irritant gases in concentrations that occur in polluted atmospheres might play a role in the degranulation and histamine release processes of mast cells in lung tissue. To test this hypothesis, young rats weighing 140-150 g were exposed to 1 ppm nitrogen dioxide for 2 hr. One group was killed immediately, and another group 24-27 hr after exposure. A third group was exposed to 0.5 ppm nitrogen dioxide for 4 hr and killed immediately. Animals serving as controls were placed for 1 hr into the exposure chamber ventilated with ambient air. Standard histological preparations were made after Carnoy’s fixative and subsequent staining with toluidine blue. The mast cells of the control animals appeared relatively intact with no evidence of disorientation. The cells of the animals exposed to NO2 and sacrificed immediately revealed rupture and loss of cytoplasmic granules with some disorientation. These changes were observed in the pleura, bronchi, and surrounding tissue with the effects more marked in the mediastinum. The mast cells of exposed animals sacrificed about 24-27 hr after discontinuing the exposure showed in some cases a combination of ruptured and intact cells with a predominance of the latter, and in other cases could not be differentiated from the controls. These findings indicate that 24 hr or more are required to reverse the acute effects of NO2 inhalation. The toxicological implications will be discussed. The release of granular substances in the lung tissue when NO2 is inhaled signifies the onset of an acute inflammation.  相似文献   

13.
The extreme particle size range and enormous heterogeneity of airborne biological particles make sampling a significant challenge. Three major sampler types available include gravity devices, impactors and suction samplers. Gravity methods, while most commonly used, are neither qualitatively or quantitatively accurate and of very limited use. Impaction samplers (rotating, centrifugal) accelerate air by rotating the collecting surface or with a fan. Particles are collected from measured volumes of air but these devices preferentially sample particles larger than 10 μm. Suction samplers, which efficiently collect particles of a wide size range from measured volumes of air, include slit samplers, cascade impactors, filtration devices and liquid impingers. Suction samplers can retrieve viable particles by direct impaction on culture media, or by subsequent culture of impinger fluid or filter eluates. Nonviable particles can often be identified by microscopic examination of slides, filters or filtrates of impinger fluids. Immunoassays and biochemical assays can be used with impinger fluid and filter eluates to assess antigen and toxin levels in measured air samples.  相似文献   

14.
Methods for the measurement of nitric acid, particulate nitrate and total inorganic nitrate (i.e. HNO3 plus particulate nitrate) are compared using atmospheric samples from the Los Angeles Basin. Nitric acid was measured by (1) the nitrate collected on nylon or NaCl-impregnated cellulose filters after removal of particulate matter with Teflon prefilters, (2) long-path Fourier transform infrared spectroscopy (FTIR) performed by a collaborating investigator, and (3) the difference between total inorganic nitrate (TIN) and particulate nitrate (PN). TIN was measured by the sum of the nitrate collected with a Teflon prefilter and nylon or NaCl-impregnated after-filter. PN was measured by the nitrate able to penetrate a diffusion dénuder coated to remove acidic gases (e.g. HNO3). Losses of nitrate from Teflon prefilters were determined by comparing the nitrate retained by these filters to the nitrate penetrating the acid gas denuder. TIN and the nitrate collected with glass fiber filters were compared to assess the origin of the artifact particulate nitrate on the latter.Nitric acid measurements using nylon or NaCl-impregnated after-filters were substantially higher than those by the difference technique. This correlated with losses of nitrate from the Teflon prefilters, which exceeded 50 % at high ambient temperature and low relative humidity. Nitric acid by the difference method exceeded that by FTIR by, on average, 20 %. Thus errors inferred in HNO3 measurements by comparison to the difference measurements are considered minimum values. The high values for HNO3 by the difference method are consistent with the partial loss of PN in the acid gas denuder. However, no loss of 0.1 μm to 3 μm diameter NH4NO3 particles was observed. Thus, if significant, such loss is restricted to coarse particulate nitrate. Heating the filter samplers was shown to increase sampling errors. Nitrate results obtained in short-term, low volume sampling with Gelman A glass fiber filters approximated those with the TIN samplers. Accordingly, these glass fiber filters retained essentially all the gaseous nitric acid sampled.  相似文献   

15.
Many nonferrous metals are produced from sulfur-bearing minerals. When pyrometallurgical processes are used, sulfur dioxide gas is formed as a byproduct. In many cases, a small but significant portion of the SO2 is oxidized further to SO3 within the pyrometallurgical reactor system. Upon cooling of the gases, as would occur when such gases contact the atmosphere, SO3 will absorb moisture and condense as a sulfuric acid aerosol, typically referred to as acid mist.  相似文献   

16.
New kinds of fabric filtration devices are reviewed in this paper. The industry is on the threshold of a period of innovation and development in this field which should see the advancement of new concepts of the way filters function.  相似文献   

17.
The purpose of this paper is to describe instrumentation to aerodynamically size suspended particulates found in ambient air and to summarize results of field testing utilizing the new technique.

A four-stage, multiorifice high-volume fractionating impactor with backup filter, which can be operated as a component of the standard high-volume sampler, collects particulate matter in five separate aerodynamic size ranges: 7 micrometer (μm) or larger, 3.3 to 7 μm, 2.0 to 3.3 μm, 1.1 to 2.0 μm, and 0.01 to 1.1 μm.

Comparative field tests utilizing duplicate sampling techniques were conducted to determine the feasibility of using the size fractionator on a routine basis in field operations. Verification of the actual particle size separation was not undertaken; however, earlier tests utilizing laboratory-generated aerosols have been performed with satisfactory results.

The results of field tests indicate that the fractionator can be used to determine the aerodynamic size distribution of particulate matter. A glass fiber surface with a pH of 11.0 was found to adsorb atmospheric acid gases during sampling and thus gave erroneous mass concentration results when compared to the standard high-volume sampler. Glass fiber filters with a pH of 6.5 eliminated the acid gas adsorption.  相似文献   

18.
19.
The NASN sampler for the collection of gaseous pollutants has been modified to increase its versatility and efficiency. Oxides of nitrogen are collected in bubblers employing a 70-100 μ frit with a collection efficiency of approximately 50% depending upon the frit porosity. Included in the sampler is a bubbler for the collection of aldehydes in which the aldehyde-MBTH complex is stable at least two weeks. This inert bubbler, which is constructed of polypropylene and Teflon, makes it possible for samples to be collected over the network and analyzed at a central laboratory. In addition, gaseous ammonia is collected in 0.1N H2SO4. This collecting system has an efficiency of greater than 85%. Low-level samples are analyzed automatically employing Nesslerization, whereas high-level samples from source emissions may be collected in indicating boric acid and titrated with 0.02N H2SO4. The sampler will accommodate either 50 or 100 ml polypropylene collecting tubes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号