首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Gas exchange and pigmentation responses of mature ponderosa pine (Pinus ponderosa Laws.) branches to ozone and acid rain exposure were investigated using three grafted clones growing in a managed seed orchard. Exposure of one-year-old foliage to twice ambient ozone (2 x AMB) resulted in significant decreases in net photosynthesis (Pn), stomatal conductance (gsw) and pigmentation relative to charcoal-filtered (CF) and ambient (AMB) ozone treatments. Ozone effects on gas exchange and pigmentation were most pronounced during late-season and differed significantly among clones. Environmental parameters (e.g. light, vapor pressure deficit, and temperature) accounted for more variation in Pn than did cumulative ozone exposure. Minimal differences in gsw and Pn among ozone treatments occurred during seasonal periods of high temperature and evaporative demand. Negative effects of 2 x AMB ozone on gsw and pigmentation were greatest for the clones having highest and lowest phenotypic vigor under ambient conditions; the clone of moderate phenotypic vigor under ambient conditions was least sensitive to ozone. Application of simulated acid rain of pH 3.0, pH 5.1 or no rain (NR) had little impact on gas exchange or pigmentation.  相似文献   

2.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides x nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (experiment 1) and during 1989 and 1990 (experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season, then the plants were grown outdoors with ambient ozone in 1989. In experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season, then the plants were grown outdoors with ambient ozone in 1990. Chronic exposure to ozone caused the following changes (statistically significant in one or both experiments at p<0.05): (1) earlier leaf abscission, (2) decreased stem basal diameter, (3) decreased stem mass, (4) decreased internode length, (5) decreased shoot height p=0.005, and (6) decreased leaf size in the growing season following ozone treatment. There was also strong evidence that ozone increased the number of leaves produced p=0.055. Finally, there was some evidence that ozone increased the ratio of shoot mass to root mass p=0.093.  相似文献   

3.
The effects of exposure of sugar maple (Acer saccharum Marsh.) to ozone on the entire larval stage of a native insect have not been previously investigated. This study reports the effects of sugar maple seedlings exposed to different ozone concentrations on the relative performance and the feeding preference of the forest tent caterpillar (Malacosoma disstria Hbn.). Three-year-old seedlings were set in nine open-top field chambers in the spring of 1992 and 1993. Three ozone concentrations were generated: charcoal-filtered ambient air (0x), ambient air (1x) and three times ambient air (3x). In 1992, female and male larval development time did not differ among ozone treatments. In 1993, female larvae reared on 3x developed faster than those on 0x and 1x, while male larvae were not affected. Ozone treatments did not influence pupal weights except for males in 1993 where pupae reared on 0x were heavier than 1x but did not differ from 3x. Larval and pupal survival rates were not affected by ozone in either year. Finally, 4th and 5th instar larvae showed a significant feeding preference for 3x foliage in 1993 but not in 1992. The response of the forest tent caterpillar to ozone exposed seedlings varied between years and could be more sensitive to annual climatic variations than ozone.  相似文献   

4.
Psidium guajava 'Paluma' saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF), and ambient non-filtered air+40ppb ozone (NF+O(3)) 8h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12 895ppbh(-1), respectively for the three treatments. After 5 days of exposure (AOT40=1497ppbh(-1)), interveinal red stippling appeared in plants in the NF+O(3) chamber. In the NF chamber, symptoms were observed only after 40 days of exposure (AOT40=880ppbh(-1)). After 60 days, injured leaves per plant corresponded to 86% in NF+O(3) and 25% in the NF treatment, and the average leaf area injured was 45% in NF+O(3) and 5% in the NF treatment. The extent of leaf area injured (leaf injury index) was explained mainly by the accumulated exposure of ozone (r(2)=0.91; p<0.05).  相似文献   

5.
Tibouchina pulchra saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF) and ambient non-filtered air+40 ppb ozone (NF+O3) 8 h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12,895 ppb h(-1), respectively, for the three treatments. After 25 days of exposure (AOT40=3871 ppb h(-1)), interveinal red stippling appeared in plants in the NF+O3 chamber. In the NF chamber, symptoms were observed only after 60 days of exposure (AOT40=910 ppb h(-1)). After 60 days, injured leaves per plant corresponded to 19% in NF+O3 and 1% in the NF treatment; and the average leaf area injured was 7% within the NF+O3 and 0.2% within the NF treatment. The extent of leaf area injured (leaf injury index) was mostly explained by the accumulated exposure of ozone (r2=0.89; p<0.05).  相似文献   

6.
Greenhouse and ambient air experiments have shown ethylene diurea (EDU) to be a strong and specific protective suppressant of ozone injury in plants. To examine how EDU affects plant responses to various ozone (O(3)) levels under controlled field conditions, Phaseolus vulgaris L. cv. Lit was treated with 150 ppm EDU every 14 days and exposed in open-top chambers to charcoal-filtered air (CF), nonfiltered air (NF) or two cf treatments with ozone added. The ozone treatments were proportional additions of one (CF1) and two (CF2) times ambient ozone levels. The mean ozone concentrations in the CF, NF, CF1 and CF2 treatments were 0.98, 14.1, 14.98 and 31.56 nl litre(-1). A two-way split plot ANOVA revealed that shoot dry weight was significantly reduced by ozone. EDU treatment was highly significant for leaf dry weight, root dry weight and shoot dry weight, but not for pod dry weight; leading to a higher biomass of EDU-treated plants. Ozone/EDU interactions were significant for root weight only, indicating that EDU reduced growth suppression by ozone. These results show that EDU action on plant biomass could be interpreted as a delay in senescence since EDU-treated plants showed a significant decreased biomass loss even in the CF treatment.  相似文献   

7.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides X nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (Experiment 1) and during 1989 and 1990 (Experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In Experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season; then the plants were grown outdoors with ambient ozone in 1989. In Experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season; then the plants were grown outdoors with ambient ozone in 1990. Shallow wounds were made into the bark tissue and inoculated with either an aqueous suspension of conidia of Mycosphaerella populorum or sterile water on 1 and 2 September 1988 (Experiment 1) or 16 and 17 August 1989 (Experiment 2). In Experiment 1, wounds were inoculated either 0, 7, or 14 days after wounding. In Experiment 2, wounds were inoculated either 0, 3, or 6 days after wounding. Canker development was measured after harvest on 16 and 17 July 1989 (Experiment 1) and 28 May 1990 (Experiment 2). In both experiments, chronic exposure to ozone significantly increased the incidence of canker formation in inoculated wounds, and no cankers formed in wounds that received only sterile water. In Experiment 1, cankers formed only on plants inoculated the same day as wounding. No cankers formed on plants inoculated either 7 or 14 days after wounding. In Experiment 2, cankers formed on plants inoculated on the same day as wounding, and on a few plants inoculated 3 days after wounding. No cankers formed on plants inoculated 6 days after wounding. Additionally, in Experiment 2, exposure to increased concentrations of ozone caused a significantly higher number of plants to die during the subsequent winter. Analysis of partial correlation coefficients among plant growth and plant disease variables suggested that the observed ozone-induced increase in the susceptibility of the plants to disease was not mediated by alterations in plant growth.  相似文献   

8.
Field symptoms typical of ozone injury have been observed on several conifer species in Great Smoky Mountains National Park, and tropospheric ozone levels in the Park can be high, suggesting that ozone may be causing growth impairment of these plants. The objective of this research was to test the ozone sensitivity of selected conifer species under controlled exposure conditions. Seedlings of three species of conifers, Table Mountain pine (Pinus pungens), Virginia pine (Pinus virginiana), and eastern hemlock (Tsuga canadensis), were exposed to various levels of ozone in open-top chambers for one to three seasons in Great Smoky Mountains National Park in Tennessee, USA. A combination of episodic profiles (1988) and modified ambient exposure regimes (1989-92) were used. Episodic profiles simulated an average 7-day period from a monitoring station in the Park. Treatments used in 1988 were: charcoal-filtered (CF), 1.0x ambient, 2.0x ambient, and ambient air-no chamber (AA). In 1989 a 1.5x ambient treatment was added, and in 1990, additional chambers were made available, allowing a 0.5x ambient treatment to be added. Height, diameter, and foliar injury were measured most years. Exposures were 3 years for Table Mountain pine (1988-90), 3 years for hemlock (1989-91), and 1 and 2 years for three different sets of Virginia pine (1990, 1990-91, and 1992). There were no significant (p<0.05) effects of ozone on any biomass fraction for any of the species, except for older needles in Table Mountain and Virginia pine, which decreased with ozone exposure. There were also no changes in biomass allocation patterns among species due to ozone exposure, except for Virginia pine in 1990, which showed an increase in the root:shoot ratio. There was foliar injury (chlorotic mottling) in the higher two treatments (1.0x and 2.0x for Table Mountain and 2.0x for Virginia pine), but high plant-to-plant variability obscured formal statistical significance in many cases. We conclude, at least for growth in the short-term, that seedlings of these three conifer species are insensitive to ambient and elevated levels of ozone, and that current levels of ozone in the Park are probably having minimal impacts on these particular species.  相似文献   

9.
Ozone fumigations that mimic ambient ozone distributions facilitate the development of links between
  • 1.(1) vegetative effects results that are generated in the laboratory and the field and
  • 2.(2) predictive effects models that depend upon ambient air quality data.
Experimental exposure profiles were constructed from a readily available ambient air quality data base (i.e. EPA SAROAD). Air quality data from selected monitoring sites were characterized over the 5-month growing season by identifying
  • 1.(a) the number of occurrences of hourly ozone concentrations equal to or above 0.07 ppm,
  • 2.(b) the number of days of each episode,
  • 3.(c) the number of days between episodes and
  • 4.(d) the rate of rise and decline of the daily ozone concentrations.
An episodic profile was constructed incorporating the information into a representative 30-day ozone exposure pattern in which the concentration was changed on an hourly basis. In order to compare treatments having equivalent exposures (sum of hourly ozone concentrations equal to or above a minimum value) but dissimilar temporal distributions of hourly concentrations, a second profile was created. This profile was characterized by a repeated daily incremental rise and decline in ozone concentration that had the same hourly maximum concentration each day. The use of experimental exposure profiles mimicking ambient air quality characteristics and applied under controlled experimental conditions permits the examination of important exposure parameters on plant response.  相似文献   

10.
To investigate short-term effects of ambient ozone exposure on mortality in Chinese cities, we conducted a meta-analysis of 10 effect estimates of 5 short-term studies, which reported associations between ambient ozone and mortality in Chinese mainland cities. And we estimated pooled effects by non-accidental mortality, cardiovascular mortality, and respiratory mortality. Combined estimates and their 95%CI were tested by RevMan 5, and Funnel plots were used for the bias analysis. For a 10 μg m−3 increase of maximum 8-h average concentration of ozone, the percent change for non-accidental mortality, cardiovascular mortality, and respiratory mortality were 0.42 (95%CI, 0.32–0.52%), 0.44% (95%CI, 0.17–0.70%) and 0.50% (95%CI, 0.22–0.77%), respectively. Compared with pooled estimates from other meta-analyses on ambient ozone-associated mortality, our pooled estimate for non-accidental mortality was slightly higher than previous ones and pooled estimate for cardiovascular mortality was consistent with others. However, we observed significantly positive association between ambient ozone and respiratory mortality, which were generally nonsignificant in earlier studies. By combining estimates from published evidence, a small but substantial association between ambient ozone level and mortality was observed in Mainland China.  相似文献   

11.
Since the 1960s, much effort has been devoted to collecting and formatting air quality data. This paper discusses 1) the availability of air quality data for assessing potential biological impacts associated with ozone and sulfur dioxide ambient exposures, 2) examples of how air quality data can be characterized for assessing vegetation effects, and 3) the limitations associated with some exposure parameters used for developing relevant vegetation doseresponse yield reduction models. Data are presented showing that some ozone monitoring sites not continuously affected by local urban sources experience consecutive hourly ozone exposures ≥0.10 ppm in the late evening and early morning hours. These sites experience their maximum ozone concentrations either in the spring or summer months. Sites influenced by local rural sources experience their maximum ozone concentrations during the summer months. It is suggested that further research be performed to identify whether the sensitivity of a target organism at the time of exposure, as well as the pollutant concentration and chemical form that enters into the target organism, is as important in defining effects as air pollutant exposure alone.  相似文献   

12.
Abstract

To evaluate methods of reducing exposure of school children in southwest Mexico City to ambient ozone, outdoor ozone levels were compared to indoor levels under three distinct classroom conditions: windows/doors open, air cleaner off; windows/doors closed, air cleaner off; windows/ doors closed, air cleaner on. Repeated two-minute average measurements of ozone were made within five minutes of each other inside and outside of six different school classrooms while children were in the room. Outdoor ozone two-minute average levels varied between 64 and 361 ppb; mean outdoor levels were above 160 ppb for each of the three conditions. Adjusting for outdoor relative humidity, for a mean outdoor ozone concentration of 170 ppb, the mean predicted indoor ozone concentrations were 125.3 (±5.7) ppb with windows/doors open; 35.4 (±4.6) ppb with windows/ doors closed, air cleaner off; and 28.9 (±4.3) ppb with windows/ doors closed, air cleaner on. The mean predicted ratios of indoor to outdoor ozone concentrations were 0.71 (±0.03) with windows/doors open; 0.18 (±0.02) ppb with windows/doors closed, air cleaner off; and 0.15 (±0.02) ppb with windows/doors closed, air cleaner on. As outdoor ozone concentrations increased, indoor ozone concentrations increased more rapidly with windows and doors open than with windows and doors closed. Ozone exposure in Mexican schools may be significantly reduced, and can usually be kept below the World Health Organization (WHO) guideline of 80 ppb, by closing windows and doors even when ambient ozone levels reach 30Q ppb or more.  相似文献   

13.
There is an ongoing debate as to which components of the ambient ozone (O3) exposure dynamics best explain adverse crop yield responses. A key issue is regarding the importance of peak versus mid-range hourly ambient O3 concentrations. While in this paper the importance of peak atmospheric O3 concentrations is not discounted, if they occur at a time when plants are conducive for uptake, the corresponding importance of more frequently occurring mid-range O3 concentrations is described. The probability of co-occurrence of high O3 concentrations and O3 uptake limiting factors is provided using coherent data sets of O3 concentration, air temperature, air humidity, mean horizontal wind velocity and global radiation measured at representative US and German air quality monitoring sites. Using the PLant-ATmosphere INteraction (PLATIN) model, the significance of the aforementioned meteorological parameters on ozone uptake is examined. In addition, the limitations of describing the O3 exposure for plants under ambient, chamberless conditions by SUM06, AOT40 or W126 exposure indices are discussed.  相似文献   

14.
Open pollinated families of black cherry seedlings were studied to determine genotypic differences in foliar ozone injury and leaf gas exchange in 1994 and growth response following three growing seasons. An O(3)-sensitive half-sibling family (R-12) and an O(3)-tolerant half-sibling family (MO-7) planted in natural soil were studied along with generic nursery stock (NS) seedlings. Ozone exposure treatments were provided through open top chambers and consisted of 50, 75, and 97% of ambient ozone, and open plots from May 9 to August 26, 1994. Ambient ozone concentrations reached an hourly peak of 88 ppb with 7-hour averages ranging from 39 to 46 ppb. Seedlings in the 50 and 75% of ambient chambers were never exposed to greater than 80 ppb O(3). Visible foliar ozone injury (stipple) was significantly higher for R-12 seedlings than MO-7 seedlings and increased with increasing ozone exposures. For the chamber treatments averaged over all families, there was no significant difference in stomatal conductance and net photosynthetic rates, but there was a significant decrease in root biomass, and a significant decrease in root/shoot ratio between the 50 and 97% of ambient chambers. Stomatal conductance and net photosynthetic rates were significantly different between families with R-12 seedlings generally greater than MO-7 seedlings. The R-12 seedlings had a 7.5 mmol m(-2) increase in ozone uptake compared to MO-7, and at the same cumulative O(3) exposure R-12 exhibited 40.9% stippled leaf area, whereas MO-7 had 9.2% stippled leaf area. Significant differences were observed in stem volume growth and total final biomass between the open-top chambers and open plots. Although R-12 had the most severe foliar ozone injury, this family had significantly greater stem volume growth and total final biomass than MO-7 and NS seedlings. Root:shoot ratio was not significantly different between MO-7 and R-12 seedlings.  相似文献   

15.
Spring wheat (Triticum aestivum L. cv. Turbo) was exposed in open-top chambers to six different ozone levels (8-h daily means from 12.4 to 122 microg m(-3)), to non-filtered air and to chamberless field conditions for 31 days from seedling stage through ear emergence. Powdery mildew (Erysiphe graminis DC. f.sp. tritici Marchal) which developed during the exposure period was significantly enhanced from 0.3/0.6% (two chamber replicates), 1.2/2.1%, 0.9/2.2% in charcoal-filtered air (CF) to 1.5/1.6%, 3.7/4.3%, 4.4/4.6% at the highest level of ozone, on the flag leaf, second and third leaf position, respectively. Post-exposure inoculation with Septoria nodorum Berk. led to increases of disease severity on the flag leaf from 40.9/43.6% in CF to 66.3/70.6% at the highest ozone concentration and on the ears from 15.7/16.5% to 26.3/26.6%. In the same comparison, severity of spot blotch following inoculation with Bipolaris sorokiniana (Sacc.) Shoem. (syn. Helminthosporium sativum Pamm., King et Bakke) was increased on the flag leaf from 3.6/8.9% to 12.3/23.4%. The three diseases examined correlated significantly with the ozone treatments in fumigated chambers. Disease severity was enhanced even on undamaged plant tissue (flag leaves). Infections of the two facultative pathogens on lower leaf positions started only in part from visible ozone lesions, mildew did not start from such lesions. No significant effects of ozone in the chambers on the saprobial colonization of the phyllosphere were detected, whereas there were marked differences in this respect between plants from the field and the chambers. At the highest ozone treatment, contents of chlorophyll a and carotenoids on the second leaf position declined significantly, which was associated with symptoms of premature senescence. Senescing effects of ozone are therefore assumed to be one major factor in predisposing wheat for necrotrophic leaf pathogens. Surprisingly, injurious and predisposing effects of ozone were completely absent in chambers supplied with non-filtered air containing ambient ozone at doses equivalent to those in CF + ozone chambers. Evidently, biological effects of ozone in pure air and in ambient air may differ markedly.  相似文献   

16.
Gaseous elemental mercury (GEM) concentration measurements were made during the Alert 2000 campaign in Alert, Nunavut, Canada, between February and May 2000. GEM exhibits dramatic mercury depletion events (MDE) concurrently with ozone in the troposphere during the Arctic springtime. Using a cold regions pyrolysis unit, it was confirmed that GEM is converted to more reactive mercury species during the MDEs. It was determined that on average 48% of this converted GEM was recovered through pyrolysis suggesting that the remaining converted GEM is deposited on the snow surfaces. Samples collected during this campaign showed an approximate 20 fold increase in mercury concentrations in the snow from the dark to light periods. Vertical gradient air profiling experiments were conducted. In the non-depletion periods GEM was found to be invariant in the air column between surface and 1–2 m heights. During a depletion period, GEM was found to be invariant in the air column except at the surface where a noticeable increase in the GEM concentration was observed. Concurrent ozone concentration profiles showed a small gradient in the air column but a sharp decrease in ozone concentration at the surface. Other profile studies showed a 41% average GEM concentration difference between the interstitial air in the snow pack and ∼2 m above the surface suggesting that GEM is emitted from the snow pack. Further profile studies showed that during MDEs surface level GEM exhibits spikes of mercury concentrations that were over double the ambient GEM concentrations. It is thought that the solar radiation may reduce reactive mercury that is deposited on the snow surface during a MDE back to its elemental form which is then increasingly released from the snow pack as the temperature increases during the day. This is observed when wind speeds are very low.  相似文献   

17.
Forty clones of Betula pendula and 6 clones of Betula pubescens, originating from southern and central Finland, were ranked in order of ozone sensitivity according to visible injuries, growth and leaf senescense under low ozone exposure. The plants were fumigated in natural climatic conditions using an open-air exposure system during two growing seasons. Control plants were grown under ambient air, and the elevated-ozone exposures were 1.6x the ambient in 1994 and 1.7x the ambient in 1995. The differences in ozone sensitivity among clones were large. Ozone tolerance was related to thicker leaves and higher stomatal density as compared to sensitive clones. Ultrastructural ozone-induced symptoms were found in chloroplasts of sensitive clones. Increased number of visibly injured leaves on fumigated plants was correlated with reduced leaf formation, foliage area, shoot dry wt and number of stomata, and increased yellowing of leaves. The results suggest that a considerable proportion of birch trees, showing high sensitivity to ozone, are at risk if ambient ozone exposures increase.  相似文献   

18.
Numerous ozone exposure statistics were calculated using hourly ozone data from crop yield loss experiments previously conducted for alfalfa, fresh market and processing tomatoes, cotton, and dry beans in an ambient ozone gradient near Los Angeles, California. Exposure statistics examined included peak (maximum daily hourly) and mean concentrations above specific threshold levels, and concentrations during specific time periods of the day. Peak and mean statistics weighted for ozone concentration and time period statistics weighted for hour of the day were also determined. Polynomial regression analysis was used to relate each of 163 ozone statistics to crop yield. Performance of the various statistics was rated by comparing residual mean square (RMS) values. The analyses demonstrated that no single statistic was best for all crop species. Ozone statistics with a threshold level performed well for most crops, but optimum threshold level was dependent upon crop species and varied with the particular statistics calculated. The data indicated that daily hours of exposure above a critical high-concentration threshold related well to crop yield for alfalfa, market tomatoes, and dry beans. The best statistic for cotton yield was an average of all daily peak ozone concentrations. Several different types of ozone statistics performed similarly for processing tomatoes. These analyses suggest that several ozone summary statistics should be examined in assessing the relationship of ambient ozone exposure to crop yield. Where no clear statistical preference is indicated among several statistics, those most biologically relevant should be selected.  相似文献   

19.
Seedlings from ten half-sib families of loblolly pine (Pinus taeda) were exposed in open-top chambers to carbon-filtered air (CF), non-filtered air (NF), or air amended with ozone to 1.7 or 2.5 times ambient. After 105 days of exposure, half the seedlings within each family were wounded but not inoculated and half were wounded and inoculated with the pitch canker fungus, Fusarium subglutinans, to which five families were relatively resistant. After an additional 50 days of ozone treatment, seedling growth and canker development were recorded. Cankers were significantly (sigma < or = 0.05) smaller among resistant compared to susceptible families, and were significantly larger among seedlings receiving the highest (2.5) compared to the ambient (NF) ozone treatment. The wound scars of non-inoculated seedlings were also significantly larger among seedlings receiving the 2.5 compared to the NF treatment, but these dimensions did not differ significantly with seedling family or resistance. The weights of needles and large roots were significantly smaller at the 2.5 compared to the 1.7 ozone treatment for inoculated but not for non-inoculated seedlings; this resulted in a significant interaction for ozone and inoculation effects. Among resistant families, root weights were significantly smaller for inoculated seedlings. Diameter growth and dry weights of needles were significantly smaller among inoculated compared to non-inoculated seedlings, but did not differ between NF and 2.5 ozone treatments.  相似文献   

20.
Spring wheat (Triticum aestivum L., cv. Drabant) was exposed to different concentrations of ozone in open-top chambers for two growing seasons, 1987 and 1988, at a site located in south-west Sweden. The chambers were placed in a field of commercially grown spring wheat. The treatments were charcoal-filtered air (CF), non-filtered air (NF) and non-filtered air plus extra ozone (NF(+)). In 1988, one additional ozone concentration (NF(++)) was used. Grain yield was affected by the ozone concentration of the air. Air filtration resulted in an increase in grain yield of about 7% in both years, compared to NF. The addition of ozone (NF(+), NF(++)) reduced grain yield and increased the content of crude protein of the grain in both years. Filtration of the air had no significant effect on the content of crude protein, compared to NF. The results showed a strong positive chamber effect on grain yield in the cold and wet summer of 1987. In 1988, there was no net chamber effect on grain yield. The relative differences between the CF, NF and NF(+) treatments with respect to grain yield were of the same magnitude in the two years, despite the very different weather conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号