共查询到20条相似文献,搜索用时 0 毫秒
1.
Hans T. Karlsson Harvey S. Rosenberg 《Journal of the Air & Waste Management Association (1995)》2013,63(7):822-826
This is the conclusion of a 2-part article dealing with the technical aspects of lime/limestone scrubbers for coal-fired power plants, it covers instrumentation, participate removal and sludge disposal. Part I (June JAPCA) covered process chemistry and scrubber systems 相似文献
2.
Robert C. Carr Wallace B. Smith 《Journal of the Air & Waste Management Association (1995)》2013,63(5):584-599
This is the fifth in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper describes research to improve reverse-gas cleaning technology, and to characterize reverse-gas sonic assisted and shake/deflate cleaning. 相似文献
3.
Robert C. Carr Wallace B. Smith 《Journal of the Air & Waste Management Association (1995)》2013,63(3):281-293
This is the third in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper provides an overview of the design and operating characteristics of baghouses now in place in the utility industry. In addition, it discusses three key issues in design and operation: the relationships among dust cake weight and chemical composition, air-to-cloth ratio, and pressure drop; fabric selection; and bag life. 相似文献
4.
Robert C. Carr Wallace B. Smith 《Journal of the Air & Waste Management Association (1995)》2013,63(6):694-699
This is the sixth and last part in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper discusses research, development and demonstration activities now underway or planned to further understand baghouse technology to ensure efficient, economic and reliable service in utility applications. In addition, it summarizes the major findings reported in Parts I through V. 相似文献
5.
R.K. Srivastava C.A. Miller C. Erickson R. Jambhekar 《Journal of the Air & Waste Management Association (1995)》2013,63(6):750-762
Abstract Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist. 相似文献
6.
D.G. Jones O.W. Hargrove T.M. Morasky 《Journal of the Air & Waste Management Association (1995)》2013,63(10):1099-1105
This paper examines operating and control experience obtained at full-scale lime-limestone scrubber systems both in the eastern and western United States. Methods of resolving typical problems in pH control of reagent feed, water balance closure, and slurry solids de-watering are discussed and described. Control problems can be severely aggravated by scale formation inside scrubbing equipment, especially on control sensors. If the sensor reliability problems can be resolved in a properly-designed scrubbing system, then the scrubber chemistry can generally be controlled and scale formation can usually be prevented. Current regulatory trends towards zero blowdown requirements increase scrubber operating and control problems, both from a process control standpoint (due to system complexity) and from a sensor reliability standpoint (due to an increased likelihood for chemical scale formation). These factors highlight the need for continuing development of improved scrubbing systems. 相似文献
7.
Robert C. Carr 《Journal of the Air & Waste Management Association (1995)》2013,63(6):763-770
This paper summarizes information and results presented at the Third Conference on Fabric Filter Technology for Coal-Fired Power Plants held November 19-21, 1985 in Scottsdale, Arizona. Sponsored by the Electric Power Research Institute (EPRI), in cooperation with the Arizona Public Service Co. and Salt River Project, the conference focused on recent technological developments in the design and operation of fabric filters (baghouses) in electric utility settings. Papers were presented by individuals representing utilities, fabric filter manufacturers, research and development organizations, and regulatory agencies. Approximately 200 individuals attended the sessions. Summaries of the first two conferences and results of other fabric Biter research sponsored bv EPRI have been published previously in JAPCA.1–9 相似文献
8.
Michael D. Rowe 《Journal of the Air & Waste Management Association (1995)》2013,63(6):682-684
Abstract Increased interest in the health effects of ambient par–ticulate mass (PM) has focused attention on the evaluation of existing mass measurement methodologies and the definition of PM in ambient air. The Rupprecht and Patashnick Tapered Element Oscillating MicroBalance (TEOM®) method for PM is compared with time–integrated gravimetric (manual) PM methods in large urban areas during different seasons. Comparisons are conducted for both PM10 and PM2.5 concentrations. In urban areas, a substantial fraction of ambient PM can be semi–volatile material. A larger fraction of this component of PM10 may be lost from the TEOM–heated filter than the Federal Reference Method (FRM). The observed relationship between TEOM and FRM methods varied widely among sites and seasons. In East Coast urban areas during the summer, the methods were highly correlated with good agreement. In the winter, correlation was somewhat lower, with TEOM PM concentrations generally lower than the FRM. Rubidoux, CA, and two Mexican sites (Tlalnepantla and Merced) had the highest levels of PM10 and the largest difference between TEOM and manual methods. PM2.5 data from collocation of 24–hour manual samples with the TEOM are also presented. As most of the semi–volatile PM is in the fine fraction, differences between these methods are larger for PM2.5 than for PM10. 相似文献
9.
Douglas M. Costle 《Journal of the Air & Waste Management Association (1995)》2013,63(7):690-692
To preserve and improve environmental quality in a prosperous industrialized nation like the United States, we must use efficient control technology to reduce the pollution which would otherwise accompany our growth. The need for control is especially great in our use of energy. In the near term our country must depend increasingly on coal to meet our energy needs. In his 1977 energy message President Carter declared that it would be this Administration’s policy to require the use of best available control technology for all new coal burning plants. EPA is implementing this policy by adopting a rule that will require such controls on new coal-fired power plants. 相似文献
10.
Amr Abdel-Aziz 《Journal of the Air & Waste Management Association (1995)》2013,63(11):1401-1411
Abstract The objectives of this paper are to (1) quantify variability in hourly utility oxides of nitrogen (NOx) emission factors, activity factors, and total emissions; (2) investigate the autocorrelation structure and evaluate cyclic effects at short and long scales of the time series of total hourly emissions; (3) compare emissions for the ozone (O3) season versus the entire year to identify seasonal differences, if any; and (4) evaluate interannual variability. Continuous emissions monitoring data were analyzed for 1995 and 1998 for 32 units from nine baseload power plants in the Charlotte, NC, airshed. Unit emissions have a strong 24-hr cycle attributable primarily to the capacity factor. Typical ranges of the coefficient of variation for emissions at a given hour of the day were from 0.2 to 0.45. Little difference was found when comparing weekend emissions with the entire week or when comparing the O3 season with the entire year. There were substantial differences in the mean and standard deviation of emissions when comparing 1995 and 1998 data, indicative of the effect of retrofits of control technology during the intervening time. The wide range of variability and its autocorrelation should be accounted for when developing probabilistic utility emission inventories for analysis of near-term future episodes. 相似文献
11.
Ruud Meij Leo H.J. Vredenbregt Henk te Winkel 《Journal of the Air & Waste Management Association (1995)》2013,63(8):912-917
Abstract For the past 22 years in the Netherlands, the behavior of Hg in coal-fired power plants has been studied extensively. Coal from all over the world is fired in Dutch power stations. First, the Hg concentrations in these coals were measured. Second, the fate of the Hg during combustion was established by performing mass balance studies. On average, 43 ± 30% of the Hg was present in the flue gases downstream of the electrostatic precipitator (ESP; dust collector). In individual cases, this figure can vary between 1 and 100%. Important parameters are the Cl content of the fuel and the flue gas temperature in the ESP. On average, 54 ± 24% of the gaseous Hg was removed in the wet flue-gas desulfurization (FGD) systems, which are present at all Dutch coal-power stations. In individual cases, this removal can vary between 8% (outlier) and 72%. On average, the fate of Hg entering the power station in the coal was as follows: <1% in the bottom ash, 49% in the pulverized fuel ash (ash collected in the ESP), 16.6% in the FGD gypsum, 9% in the sludge of the wastewater treatment plant, 0.04% in the effluent of the wastewater treatment plant, 0.07% in fly dust (leaving the stack), and 25% as gaseous Hg in the flue gases and emitted into the air. The distribution of Hg over the streams leaving the FGD depends strongly on the installation. On average, 75% of the Hg was removed, and the final concentration of Hg in the emitted flue gases of the Dutch power stations was only ~3 μg/mSTP 3 at 6% O2. During co-combustion with biomass, the removal of Hg was similar to that during 100% coal firing. Speciation of Hg is a very important factor. An oxidized form (HgCl2) favors a high degree of removal. The conversion from Hg0 to HgCl2 is positively correlated with the Cl content of the fuel. A catalytic DENOX (SCR) favors the formation of oxidized Hg, and, in combination with a wet FGD, the total removal can be as high as 90%. 相似文献
12.
Jaques Reifman Earl E. Feldman Thomas Y.C. Wei Roger W. Glickert 《Journal of the Air & Waste Management Association (1995)》2013,63(2):240-251
ABSTRACT The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system. 相似文献
13.
14.
R. W. Gerstle S. T. Cuffe A. A. Orning C. H. Schwartz 《Journal of the Air & Waste Management Association (1995)》2013,63(2):59-64
The Public Health Service and the Bureau of Mines are conducting a joint study to evaluate a number of flue-gas-stream components from coal-burning power plants. Emissions of fly ash, sulfur oxides, nitrogen oxides, polynuclear hydrocarbons, total gaseous hydrocarbons, formaldehyde, certain metals, and carbon dioxide are determined. A previous paper covered air pollutant emissions from vertical-fired and front-wall-fired power plant boilers. This paper includes a comparative evaluation of emissions from a tangential-fired and a turbo-fired power plant boiler. 相似文献
15.
Even Bakke 《Journal of the Air & Waste Management Association (1995)》2013,63(10):1157-1161
In this presentation, adaptation of the lime/limestone process for flue gas desulfurization (FGD) is discussed and how this process can be adapted to applications in the nonferrous smelting industry such as fugitive gases, copper reverberatory furnace gases, lead sintering gases, molybdenum roasting plant tail gases, and other weak SO2 smelter gases. Different methods for particulate removal are also discussed with emphasis on how the particulate removal process can be integrated with the desulfurization process. 相似文献
16.
Zhigang Xue Jiming Hao Fahe Chai Ning Duan Yizhen Chen Jindan Li 《Journal of the Air & Waste Management Association (1995)》2013,63(12):1816-1826
Abstract This paper analyzes the air quality impacts of coal-fired power plants in the northern passageway of the West-East Power Transmission Project in China. A three-layer Lagrangian model called ATMOS, was used to simulate the spatial distribution of incremental sulfur dioxide (SO2) and coarse particulate matter (PM10) concentrations under different emission control scenarios. In the year 2005, the emissions from planned power plants mainly affected the air quality of Shanxi, Shaanxi, the common boundary of Inner Mongolia and Shanxi, and the area around the boundary between Inner Mongolia and Ningxia. In these areas, the annually averaged incremental SO2 and PM10 concentrations exceed 2 and 2.5 µg/m3, respectively. The maximum increases of the annually averaged SO2 and PM10 concentrations are 8.3 and 7.2 µg/m3, respectively, which occur around Hancheng city, near the boundary of the Shaanxi and Shanxi provinces. After integrated control measures are considered, the maximum increases of annually averaged SO2 and PM10 concentrations fall to 4.9 and 4 µg/m3, respectively. In the year 2010, the areas affected by planned power plants are mainly North Shaanxi, North Ningxia, and Northwest Shanxi. The maximum increases of the annually averaged SO2 and PM10 concentrations are, respectively, 6.3 and 5.6 µg/m3, occurring in Northwest Shanxi, which decline to 4.4 and 4.1 µg/m3 after the control measures are implemented. The results showed that the proposed power plants mainly affect the air quality of the region where the power plants are built, with little impact on East China where the electricity will be used. The influences of planned power plants on air quality will be decreased greatly by implementing integrated control measures. 相似文献
17.
J. A. Sousa J. E. Houck J. A. Cooper J. M. Daisey 《Journal of the Air & Waste Management Association (1995)》2013,63(12):1439-1444
The Deep Creek Lake Study of 1983 provided an opportunity to obtain emission samples from coal-fired power plants with a dilution sampler for mutagenicity testing. Stack and ambient samples of particulate matter were collected with a dilution sampler at three coal-fired power plants in West Virginia. Samples were sequentially extracted with cyclohexane (CX), dichloromethane (DCM) and acetone (ACE) and tested for mutagenicity in the Ames Salmonella/microsome assay using TA98 (-S9). For the stack samples, the CX, DCM and ACE fractions constituted 1.0, 0.7 and 98.1 percent of the total extractable organic material (EOM), respectively, compared to 28.5, 7.4 and 64.1 percent for the ambient samples. In contrast, the mutagenic activity of the organic fractions was concentrated in the CX and DCM fractions. The cyclohexane- and dichloromethane-soluble fractions of the stack samples from all locations exhibited mutagenicity when tested in the plate incorporation assay. No significant response was observed with the acetone fraction. When tested with Kado's modification of the preincubation assay, the acetone-soluble fraction did exhibit mutagenic activity comparable to that of the other fractions when expressed in units of revertants per milligram of particular matter. Chemical analyses of one of the acetone-soluble fractions indicated that half of the mass was sulfuric acid while the remainder consisted of C, H and O. More than 30 peaks were detected in the high pressure liquid chromatogram of this fraction. Although little mutagenic activity was detected in the polar ACE fraction of the diluted stack emissions samples with this single bioassay, in view of the large mass of this fraction, further investigation of the chemical composition and genotoxic activity of this fraction would be prudent. 相似文献
18.
Jacob Katz 《Journal of the Air & Waste Management Association (1995)》2013,63(11):525-528
The relationship between sulfur in coal, boiler exit gas temperature, and the carbon portion of fly ash have a major effect on the electrical properties of fly ash. Whether effective collection of fly ash is obtained by the electrostatic precipitator installation alone or the precipitator—mechanical combination depends primarily on a knowledge of this relationship. Fly ash electrical properties can range from a highly "resistive" to a highly "conductive" state which can appreciably alter the precipitator collection performance. A correlation of coal sulfur and boiler exit flue gas temperature is given to indicate the probability of expecting an optimum voltage—current relationship with different combinations of these factors. Carbon affects the electrical conditioning of fly ash by providing parallel paths of current leakage through the deposited dust layer. Therefore, removal of the carbon particles in a mechanical collector placed before the precipitator can alter the precipitator electrical characteristics. 相似文献
19.
Edward S. Rubin Francis Clay McMichael 《Journal of the Air & Waste Management Association (1995)》2013,63(11):1099-1105
The types and rates of pollutant emissions from a coal-fired power plant depend upon plant design, coal characteristics, and environmental control policy. In the past, air pollution regulations were often promulgated without rigorous analysis of the resulting energy penalties and secondary environmental impacts that occur in other environmental media (air, land, or water), which are counterproductive to overall environmental quality. This paper describes a Comparative Assessment Model that has been developed to consider systematically such tradeoffs for conventional and advanced coal-to-electric technologies. The model is applied to quantify the secondary (“cross-media”) environmental and resource impacts resulting from alternative air pollution control policies that reduce sulfur dioxide emissions from a 1000 MW power plant. Multimedia pollutant burdens are presented, together with the increased requirements for coal, limestone, and water that are incurred in generating a fixed net quantity of electricity. The development of sound public policy requires that environmental regulations be sensitive to adverse effects in all environmental media, and that tradeoffs involved in the regulation of specific pollutants to one medium be rigorously and systematically characterized. 相似文献