首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Evaluating sources of indoor air pollution   总被引:2,自引:0,他引:2  
Evaluation of indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters. The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA's Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed in large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA's IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on "sink" surfaces.  相似文献   

2.
Evaluation of Indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters.

The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA’s Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed In large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA’s IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on “sink” surfaces.  相似文献   

3.
The Coordinating Research Council (CRC) held its eleventh workshop in March 2001, focusing on results from the most recent real-world vehicle emissions research. We summarize the presentations from researchers engaged in improving our understanding of the contribution of mobile sources to ambient air quality and emission inventories. Participants in the workshop discussed efforts to improve mobile source emission models and emission inventories, the role of on-board diagnostic (OBD) systems in inspection and maintenance (I/M) programs, particulate matter (PM) emissions, contributions of diesel vehicles to the emission inventory, on-road emissions measurements, fuel effects, unregulated emissions, and microscale and modal emission models, as well as topics for future research.  相似文献   

4.
Emission trading is a market-based approach designed to improve the efficiency and economic viability of emission control programs; emission trading has typically been confined to trades among single pollutants. Interpollutant trading (IPT), as described in this work, allows for trades among emissions of different compounds that affect the same air quality end point, in this work, ambient ozone (O3) concentrations. Because emissions of different compounds impact air quality end points differently, weighting factors or trading ratios (tons of emissions of nitrogen oxides (NO(x)) equivalent to a ton of emissions of volatile organic compounds [VOCs]) must be developed to allow for IPT. In this work, IPT indices based on reductions in O3 concentrations and based on reductions in population exposures to O3 were developed and evaluated using a three-dimensional gridded photochemical model for Austin, TX, a city currently on the cusp of nonattainment with the National Ambient Air Quality Standards for O3 concentrations averaged over 8 hr. Emissions of VOC and NO(x) from area and mobile sources in Austin are larger than emissions from point sources. The analysis indicated that mobile and area sources exhibited similar impacts. Trading ratios based on maximum O3 concentration or population exposure were similar. In contrast, the trading ratios did exhibit significant (more than a factor of two) day-to-day variability. Analysis of the air quality modeling indicated that the daily variability in trading ratios could be attributed to daily variations in both emissions and meteorology.  相似文献   

5.
A computer model called the Ozone Risk Assessment Model (ORAM) was developed to evaluate the health effects caused by ground-level ozone (O3) exposure. ORAM was coupled with the U.S. Environmental Protection Agency's (EPA) Third-Generation Community Multiscale Air Quality model (Models-3/CMAQ), the state-of-the-art air quality model that predicts O3 concentration and allows the examination of various scenarios in which emission rates of O3 precursors (basically, oxides of nitrogen [NOx] and volatile organic compounds) are varied. The principal analyses in ORAM are exposure model performance evaluation, health-effects calculations (expected number of respiratory hospital admissions), economic valuation, and sensitivity and uncertainty analysis through a Monte Carlo simulation. As a demonstration of the system, ORAM was applied to the eastern Tennessee region, and the entire O3 season was simulated for a base case (typical emissions) and three different emission scenarios. The results indicated that a synergism occurs when reductions in NOx emissions from mobile and point sources were applied simultaneously. A 12.9% reduction in asthma hospital admissions is expected when both mobile and point source NOx emissions are reduced (50 and 70%, respectively) versus a 5.8% reduction caused by mobile source and a 3.5% reduction caused by point sources when these emission sources are reduced individually.  相似文献   

6.
The recorded exceedances of the 24-hr PM10 National Ambient Air Quality Standard (NAAQS) in Treasure Valley, Idaho, have been associated with prolonged stagnation periods during the winter. A comprehensive modeling study of PM10 impact in Treasure Valley was performed to support the State Implementation Plan (SIP). The study included base-year and short-term episodic conditions. The ISCST3 (Industrial Source Complex Short Term 3) model, using the base-year meteorology and gridded emissions of mobile sources, point sources, and wood burning as input, generally agreed well with measurements in both temporal patterns and annual averages. The WYNDvalley model was evaluated using monitoring data and was used to simulate the PM10 impact for episodic exceedances during stagnant winter conditions. An emission inventory was prepared for a base year (1995) and then extrapolated to the years 2000, 2005, 2010, and 2015 in order to determine air quality planning requirements. According to the simulations using base-year emissions and meteorology, exceedances are not expected. However, exceedances at some stations could be expected using projected emissions and episodic meteorology. Results from emission control strategies we developed indicate that mobile-source emissions have the most significant impact; reduction of 25% would be needed to eliminate the simulated exceedances in all projected years.  相似文献   

7.
Abstract

A computer model called the Ozone Risk Assessment Model (ORAM) was developed to evaluate the health effects caused by ground-level ozone (O3) exposure. ORAM was coupled with the U.S. Environmental Protection Agency’s (EPA) Third-Generation Community Multiscale Air Quality model (Models-3/CMAQ), the state-of-the-art air quality model that predicts O3 concentration and allows the examination of various scenarios in which emission rates of O3 precursors (basically, oxides of nitrogen [NOx] and volatile organic compounds) are varied. The principal analyses in ORAM are exposure model performance evaluation, health-effects calculations (expected number of respiratory hospital admissions), economic valuation, and sensitivity and uncertainty analysis through a Monte Carlo simulation. As a demonstration of the system, ORAM was applied to the eastern Tennessee region, and the entire O3 season was simulated for a base case (typical emissions) and three different emission scenarios. The results indicated that a synergism occurs when reductions in NOx emissions from mobile and point sources were applied simultaneously. A 12.9% reduction in asthma hospital admissions is expected when both mobile and point source NOx emissions are reduced (50 and 70%, respectively) versus a 5.8% reduction caused by mobile source and a 3.5% reduction caused by point sources when these emission sources are reduced individually.  相似文献   

8.
Abstract

Emission trading is a market‐based approach designed to improve the efficiency and economic viability of emission control programs; emission trading has typically been confined to trades among single pollutants. Interpollutant trading (IPT), as described in this work, allows for trades among emissions of different compounds that affect the same air quality end point, in this work, ambient ozone (O3) concentrations. Because emissions of different compounds impact air quality end points differently, weighting factors or trading ratios (tons of emissions of nitrogen oxides (NOx) equivalent to a ton of emissions of volatile organic compounds [VOCs]) must be developed to allow for IPT. In this work, IPT indices based on reductions in O3 concentrations and based on reductions in population exposures to O3 were developed and evaluated using a three‐dimensional gridded photochemical model for Austin, TX, a city currently on the cusp of nonattainment with the National Ambient Air Quality Standards for O3 concentrations averaged over 8 hr. Emissions of VOC and NOx from area and mobile sources in Austin are larger than emissions from point sources. The analysis indicated that mobile and area sources exhibited similar impacts. Trading ratios based on maximum O3 concentration or population exposure were similar. In contrast, the trading ratios did exhibit significant (more than a factor of two) day‐to‐day variability. Analysis of the air quality modeling indicated that the daily variability in trading ratios could be attributed to daily variations in both emissions and meteorology.  相似文献   

9.
Air toxics emission inventories play an important role in air quality regulatory activities. Recently, Minnesota Pollution Control Agency (MPCA) staff compiled a comprehensive air toxics emission inventory for 1996. While acquiring data on the mass of emissions is a necessary first step, equally important is developing information on the potential toxicity of the emitted pollutants. To account for the toxicity of the pollutants in the emission inventory, inhalation health benchmarks for acute effects, chronic effects, and cancer were used to weight the mass of emissions. The 1996 Minnesota emissions inventory results were ranked by mass of emissions and by an index comprised of emissions divided by health benchmarks. The results show that six of eight pollutants ranked highest by toxicity were also the pollutants of concern indicated in environmental monitoring data and modeling data. Monitoring data and modeling results did not show high impacts of the other two pollutants that were identified by the toxicity-based emission ranking method. The biggest limitation in this method is the lack of health benchmark values for many pollutants. Despite uncertainties and limited information, this analysis provides useful information for further targeting pollutants and source categories for control.  相似文献   

10.
Three modeling approaches, the U.S. Environmental Protection Agency’s (EPA) Community Multiscale Air Quality (CMAQ) zero-out, the Comprehensive Air quality Model with extensions (CAMx) zero-out, and the CAMx probing tools ozone source apportionment tool (OSAT), were used to project the contributions of various source categories to future year design values for summer 8-hr average ozone concentrations at selected U.S. monitors. The CMAQ and CAMx zero-out or brute-force approaches predicted generally similar contributions for most of the source categories, with some small differences. One of the important findings from this study was that both the CMAQ and CAMx zero-out approaches tended to apportion a larger contribution to the “other” category than the OSAT approach. For the OSAT approach, this category is the difference between the total emissions and the sum of the tracked emissions and consists of non-U.S. emissions. For the zero-out approach, it also includes the effects of nonlinearities in the system because the sum of the sensitivities of all sources is not necessarily equal to the sum of their contributions in a nonperturbed environment. The study illustrates the strengths and weaknesses of source apportionment approaches, such as OSAT, and source sensitivity approaches, such as zero-out. The OSAT approach is suitable for studying source contributions, whereas the zero-out approach is suitable for studying response to emission changes. Future year design values of summer 8-hr average ozone concentrations were projected to decrease at all the selected monitors for all the simulations in each city, except at the downtown Los Angeles monitor. Both the CMAQ and CAMx results showed all modeled locations project attainment in 2018 and 2030 to the current National Ambient Air Quality Standards (NAAQS) level of 75 ppb, except the selected Los Angeles monitor in 2018 and the selected San Bernardino monitor in 2018 and 2030.
Implications:This study illustrates the strengths and weaknesses of three modeling approaches, CMAQ zero-out, CAMx zero-out, and OSAT to project contributions of various source categories to future year design values for summer 8-hr average ozone concentrations at selected U.S. monitors. The OSAT approach is suitable for studying source contributions, whereas the zero-out approach is suitable for studying response to emission changes. Future year design values of summer 8-hr average ozone concentrations were projected to decrease, except at the downtown Los Angeles monitor. Comparing projections with the current NAAQS (75 ppb) show attainment everywhere, except two locations in 2018 and one location in 2030.  相似文献   

11.
ABSTRACT

The recorded exceedances of the 24-hr PM10 National Ambient Air Quality Standard (NAAQS) in Treasure Valley, Idaho, have been associated with prolonged stagnation periods during the winter. A comprehensive modeling study of PM10 impact in Treasure Valley was performed to support the State Implementation Plan (SIP). The study included base-year and short-term episodic conditions. The ISCST3 (Industrial Source Complex Short Term 3) model, using the base-year meteorology and gridded emissions of mobile sources, point sources, and wood burning as input, generally agreed well with measurements in both temporal patterns and annual averages. The WYNDvalley model was evaluated using monitoring data and was used to simulate the PM10 impact for episodic exceedances during stagnant winter conditions. An emission inventory was prepared for a base year (1995) and then extrapolated to the years 2000, 2005, 2010, and 2015 in order to determine air quality planning requirements. According to the simulations using base-year emissions and meteorology, exceedances are not expected. However, exceedances at some stations could be expected using projected emissions and episodic meteorology. Results from emission control strategies we developed indicate that mobile-source emissions have the most significant impact; reduction of 25% would be needed to eliminate the simulated exceedances in all projected years.  相似文献   

12.
In the last 10 yr, Beijing has made a great effort to improve its air quality. However, it is still suffering from regional coarse particulate matter (PM10) pollution that could be a challenge to the promise of clean air during the 2008 Olympics. To provide scientific guidance on regional air pollution control, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) air quality modeling system was used to investigate the contributions of emission sources outside the Beijing area to pollution levels in Beijing. The contributions to the PM10 concentrations in Beijing were assessed for the following sources: power plants, industry, domestic sources, transportation, agriculture, and biomass open burning. In January, it is estimated that on average 22% of the PM10 concentrations can be attributed to outside sources, of which domestic and industrial sources contributed 37 and 31%, respectively. In August, as much as 40% of the PM10 concentrations came from regional sources, of which approximately 41% came from industry and 31% from power plants. However, the synchronous analysis of the hourly concentrations, regional contributions, and wind vectors indicates that in the heaviest pollution periods the local emission sources play a more important role. The implications are that long-term control strategies should be based on regional-scale collaborations, and that emission abatement of local sources may be more effective in lowering the PM10 concentration levels on the heavy pollution days. Better air quality can be attained during the Olympics by placing effective emission controls on the local sources in Beijing and by controlling emissions from industry and power plants in the surrounding regions.  相似文献   

13.
The Interstate Air Pollution Study of the St. Louis-East St. Louis Metropolitan Area, conducted in 1963–1964, provided data for this report of air pollutant emissions related to three land-use categories: (1) residential, (2) institutional and commercial, and (3) industrial. A fourth land-use category, transportation and open space, is included in some calculations. The sources of pollutants considered are: (1) power generation, both electric utilities and industrial, (2) fuels used for space heating, (3) solid waste disposal, and (4) industrial processes. The pollutant emissions considered are particulates and sulfur oxides. Cumulative frequency distributions given are based on acres of land use and corresponding emissions per unit area. These frequency distributions—actual emission conditions that can be related to known air quality levels—provide a basis for performance standards and a guide for planners and others in future city developments, not only in St. Louis but in other similar cities as well. A suggested method for determining a different type performance zoning standard is presented. This standard is based on average conditions and thus would supplement, not replace, standards based on maximum allowable emissions. Calculations for such standards relating to St. Louis are presented.  相似文献   

14.
The Denver Air Quality Modeling Study (DAQMS) is a comprehensive modeling effort originally undertaken to apportion sources of visibility degradation and examine the visibility benefits of future emission strategies in the Denver metropolitan area. Because of the detailed treatment of the chemical and physical processes and high temporal, vertical, and horizontal resolution of the system, it is possible to examine other air-related issues and their relationships to visibility. The DAQMS analysis system consists of the Denver Air Quality Model (DAQM), a three-dimensional Eulerian chemical-transport model including aerosol and gas-phase transport and transformation processes, a three-dimensional mesoscale meteorological modeling system, visibility analysis procedures, and an emissions processing system. DAQM, the meteorological model, and the emissions information operate on a domain covering approximately the entire state of Colorado with 8-km grid resolution and 15 vertical levels from the surface to the stratosphere. Analysis from a winter visibility episode illustrates the differences between spatial and temporal distributions of light extinction, fine and coarse particle aerosol concentrations, oxidants, and carbon monoxide under various emission scenarios. Studies aimed at exploring interrelationships between these air quality concerns for different seasons, meteorological conditions, and emission management scenarios are outlined.  相似文献   

15.
Ozone remains one of the most recalcitrant air pollution problems in the US. Hourly emissions fields used in air quality models (AQMs) generally show less temporal variability than corresponding measurements from continuous emissions monitors (CEM) and field campaigns would imply. If emissions control scenarios to reduce emissions at peak ozone forming hours are to be assessed with AQMs, the effect of emissions' daily variability on modeled ozone must be understood. We analyzed the effects of altering all anthropogenic emissions' temporal distributions by source group on 2002 summer-long simulations of ozone using the Community Multiscale Air Quality Model (CMAQ) v4.5 and the Carbon Bond IV (CBIV) chemical mechanism with 12 km resolution. We find that when mobile source emissions were made constant over the course of a day, 8-h maximum ozone predictions changed by ±7 parts per billion by volume (ppbv) in many urban areas on days when ozone concentrations greater than 80 ppbv were simulated in the base case. Increasing the temporal variation of point sources resulted in ozone changes of +6 and −6 ppbv, but only for small areas near sources. Changing the daily cycle of mobile source emissions produces substantial changes in simulated ozone, especially in urban areas at night; results suggest that shifting the emissions of NOx from day to night, for example in electric powered vehicles recharged at night, could have beneficial impacts on air quality.  相似文献   

16.
An urban community PM10 (particulate matter < or = 10 microm in aerodynamic diameter) air pollution study was conducted in Paterson, NJ, a mixed land-use community that is interspersed with industrial, commercial, mobile, and residential land-use types. This paper examines (1) the spatial/temporal variation of PM10, elemental carbon (EC), organic carbon (OC), and nine elements; and (2) the impact of land-use type on those variations. Air samples were collected from three community-oriented locations in Paterson that attempted to capture industrial, commercial, and mobile source-dominated emissions. Sampling was conducted for 24 hr every 6 days from November 2005 through December 2006. Samples were concurrently collected at the New Jersey Department of Environmental Protection-designated air toxics background site in Chester, NJ. PM10 mass, EC, OC, and nine elements (Ca, Cu, Fe, Pb, Mn, Ni, S, Ti, and Zn) that had more than 50% of samples above detection and known sources or are toxic were selected for spatial/temporal analysis in this study. The concentrations of PM10, EC, OC, and eight elements (except S) were significantly higher in Paterson than in Chester (P < 0.05). The concentrations of these elements measured in Paterson were also found to be higher during winter than the other three seasons (except S), and higher on weekdays than on weekends (except Pb). The concentrations of EC, Cu, Fe, and Zn at the commercial site in Paterson were significantly higher than the industrial and mobile sites; however, the other eight species were not significantly different within the city (P > 0.05). These results indicated that anthropogenic sources of air pollution were present in Paterson. The source apportionment confirmed the impact of vehicular and industrial emissions on the PM10 ambient air pollution in Paterson. The multiple linear regression analysis showed that categorical land-use type was a significant predictor for all air pollution levels, explaining up to 42% of the variability in concentration by land-use type only.  相似文献   

17.
The Clean Air Act (and proposed Clean Air Act Amendments in H.R. 5252) are addressed relative to quantification of emission data. Six case studies performed for the National Commission on Air Quality (NCAQ) are reviewed. The models used to quantify the amount of emissions needed to meet air quality standards for O3, particulates, and SO2 are reviewed for each case study city. Technical and resource limitations in meeting the Act’s emission inventory requirements for nonattainment plans.and PSD permitting are outlined.  相似文献   

18.
Under provision of the Clean Air Act Amendments of 1990 Title III, the EPA has proposed a regulation (Early Reduction Program) to allow a six-year compliance extension from Maximum Achievable Control Technology (MACT) standards for sources that voluntarily reduce emissions of Hazardous Air Pollutants (HAPs) by 90 percent or more (95 percent or more for particulates) from a base year of 1987 or later. The emission reduction must be made before the applicable MACT standard is proposed for the source category or be subject to an enforceable commitment to achieve the reduction by January 1, 1994 for sources subject to MACT standards prior to 1994. The primary purpose of this program is to encourage reduction of HAPs emissions sooner than otherwise required. Industry would be allowed additional time in evaluating emission reduction options and developing more cost-effective compliance strategies, although, under strict guidelines to ensure actual, significant and verifiable emission reductions occur.  相似文献   

19.
Currently available information suggests a substantial environmental impact from residential wood combustion emissions. Air pollution from this source is widespread and increasing. Current ambient measurements, surveys, and model predictions indicate winter respirable (<2 μm) emissions from residential wood combustion can easily exceed all other sources. Both the chemical potency and deliverability of the emissions from this source are of concern. The emissions are almost entirely in the inhalable size range and contain toxic and priority pollutants, carcinogens, co-carcinogens, cilia toxic, mucus coagulating agents, and other respiratory irritants such as phenols, aldehydes, etc. This source is contributing substantially to the nonattainment of current particulate, carbon monoxide, and hydrocarbon ambient air quality standards and will almost certainly have a significant impact on potential future standards such as inhalable particulates, visibility, and other chemically specific standards. Emission from this growing source is likely to require additional expenditures by industry for air pollution control equipment in nonattainment areas.  相似文献   

20.
Two indicator pollutants, carbon monoxide (CO) for mobile source influence and sulfur dioxide (SO2) for stationary source influence, were used to estimate source-type contributions to ambient NO2 levels in a base year and to predict NO2 concentrations in a future year. For a specific source-receptor pair, the so-called influence coefficient of each of three source categories (mobile sources, power plants, and other stationary sources) was determined empirically from concurrent measurements of CO and SO2 concentrations at the receptor site and CO and SO2 emissions from each source category in the source area. Those coefficients, which are considered time invariant, were used in conjunction with the base year and future year NO x emission values to estimate source-type contribution to ambient NO2 levels at seven study sites selected from the Greater Los Angeles area for both the base year period, 1974 through 1976, and the future goal year of 1987 in which the air quality standards for NO2 are to be attained. The estimated NO2 air quality at the seven sites is found to meet the national annual standard of 5 pphm and over 99.9% of total hours, the California 1-hr NO2 standard of 25 pphm in 1987. The estimated power plant contributions to ambient NO2 levels are found to be considerably smaller than those to total NO x emissions in the area. Providing that reasonably complete air quality and emissions data are available, the present analysis method may prove to be a useful tool in evaluating source contributions to both short-term peak and long-term average NO2 concentrations for use in control strategy development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号