首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A steady state mesoscale model developed to predict primary SO2 concentrations from a single point source is presented. The model was validated with data from the Midwest Interstate Sulfur Transport and Transformation (MISTT) project, with root mean square errors of 9.69 μg m?3 and 0.42 μg m?3 for SO2 and SO4 respectively. Wet deposition (washout and rainout), eddy dispersivity, dry deposition of SO2 and mean wind speed were found to be the most important factors controlling sulfur dioxide and sulfate concentrations. Estimation of precipitation acidity was then carried out using scavenging theory. The greatest potential acidification occurred approximately 200 km from the source along plume centerllne, which indicates a rather local effect as opposed to a long distance effect. The cross-plume influence was up to 60 km in width at a distance of 400 km from the source.  相似文献   

2.
During August, 1982 and January and February, 1983, General Motors Research Laboratories operated air monitoring sites on the Atlantic Coast near Lewes, Delaware and 1250 km to the east on the southwest coast of Bermuda. The overall purpose of this project was to study the transformations of the principal acid precipitation precursors, NO x and SO x species, as they transport under conditions not complicated by emissions from local sources. In this paper, the measurements of gas and particulate species from Lewes are described and the composition and sources of sulfate aerosol, which is the most important haze-producing species, are investigated.

On the average, the total suspended particulate (TSP) concentration was 27.9 μg/m3 while the PM10 (mass of particles with a diameter less than or equal to 10 μm) concentration was 22.0 μg/m3 or 79 percent of the TSP. The PM10 consisted of 6.1 μg/m3 of coarse particles (CPM, diameter = 2.5 ? 10μm) and 15.9 μg/m3 of fine particles (FPM, diameter < 2.5 μm).

On a mass basis the most important constituents of the fine particulate fraction were sulfate compounds, 50 percent, and organic compounds, 30 percent. The mean light extinction coefficient corresponds to a visual range of 18-20 km. Most of the extinction can be attributed to the sulfate (60 percent) and organic carbon (13 percent). Particle size measurements show that the mass median aerodynamic diameter for both species is 0.43 μm. This is a typical size for a hydrated sulfate aerosol. For carbon, however, this is a larger size than previously reported and results in a more efficient light scattering aerosol. Principal component analyses indicate that coal combustion emissions from the midwestern U.S. are the most significant source of sulfate in Lewes during the summer and winter.  相似文献   

3.
Aerosols of Serratia marcescens ATCC 274 were suspended in a 709L rotating drum at 20 ± 1 °C and high to mid-range relative humidities. At specified times after bacterial aerosolization, sulfur dioxide was added to concentrations of 2.5, or 5 mg/m3. Viable cell decay rate constants, in control aerosols without added sulfur dioxide, increased rapidly from near 100% to 60% RH in the first hour (termed: young aerosol) of suspension, and from a minimum rate constant at 80% in the succeeding four hours (termed: old aerosol).Upon addition of sulfur dioxide to a cloud of S. marcescens, generally, viable cell decay rate constants increased further. One exception was at 80% relative humidity where maximum resistance to SO2 accelerated death was observed for old aerosols. Cells in young aerosols were particularly sensitive to SO2 addition at mid-range humidities, while in older aerosols the cells were insensitive to up to 5 mg SO2/m3 introduced at high RH; but were up to 10 times more sensitive than cells in young aerosols to a given increase (from 2.5 to 5 mg/m3) in SO2 concentration at mid-range humidities.  相似文献   

4.
To investigate the effects of low (0.05 micromol/mol) and relatively low (0.10 micromol/mol) concentrations of ozone on photoassimilate partitioning, rice plants grown in a water culture were fed with (13)C-labelled carbon dioxide at the reproductive stage in an assimilation chamber with constant concentration of (12)CO(2) and (13)CO(2). Rice plants were exposed to ozone 4 weeks before and 3 weeks after (13)CO(2) feeding. The dry weight of whole plants decreased with increasing ozone concentration, whereas net photosynthetic rate (apparent CO(2) uptake per unit leaf area) was unaffected, compared with the control, at the time of (13)CO(2) feeding. Dry matter distribution into leaf sheaths and culms was reduced more than that into leaf blades by ozone exposure. Although panicle dry weight per plant was reduced by ozone, the percentage of panicle dry weight to the whole plant tended to increase considerably. Exposure to ozone accelerated translocation of (13)C from source leaves to other plant parts. Partitioning of (13)C to panicles and roots was higher under ozone treatment than in the control. Respiratory losses of fixed (13)C from plants tended to decrease under treatment with ozone. The increase in photoassimilate partitioning in panicles can be considered to be an acclimation response of rice plants to complete reproductive stage under the restricted biomass production caused by ozone.  相似文献   

5.
Measurements of airborne (gaseous and aerosol), cloud water, and precipitation concentrations of nitrogen compounds were made at Mt. Mitchell State Park (Mt. Gibbs, ~2006 m MSL), North Carolina, during May through September of 1988 and 1989, An annular denuder system was used to ascertain gaseous (nitric acid, nitrous acid, and ammonia) and particulate (nitrate and ammonium) nitrogen species, and a chemiluminescence nitrogen oxides analyzer was used to measure nitric oxide and nitrogen dioxide. Measurements of NO3 ? and NH4 + ions in cloud and rain water samples were made during the same time period. Mean concentrations of gaseous nitric acid, nitrous acid, and ammonia were 1.14 μg/m3, 0.3 μg/m3, and 0.62 μg/m3 for 1988, and 1.40 μg/m3,0.3 μg/m3, and 1.47 μg/m3 for 1989, respectively. Fine particulate nitrate and ammonium ranged from 0.02 to 0.21 μg/m3 and 0.01 to 4.72 μg/m3 for 1988, and 0.1 to 0.78 μg/m3 and 0.24 to 2.32 μg/m3 for 1989, respectively. The fine aerosol fraction was dominated by ammonium sulfate particles. Mean concentrations of nitrate and ammonium ions in cloud water samples were 238 and 214 μmol/l in 1988, and 135 and 147 μmol/l in 1989, respectively. Similarly, the concentrations of NO3 and NH4 + in precipitation were 26.4 and 14.0 μmol/l in 1988, and 16.6 and 15.2 μmol/l in 1989, respectively. The mean total nitrogen deposition due to wet, dry, and cloud deposition processes was estimated as ~30 and ~40 kg N/ha/year (i.e., ~10 and ~13 kg N/ha/growing season) for 1988 and 1989. Based on an analytical analysis, deposition to the forest canopy due to cloud interception, precipitation, and dry deposition processes was found to contribute ~60, ~20, and ~20 percent, respectively, of the total nitrogen deposition.  相似文献   

6.
Photochemically produced oxidants in the atmosphere cause injury to plants primarily through inhibition of basic metabolic processes. Plants vary in their response to the oxidants and this variation must be dependent in part on the variation in metabolic activity with age or environmental conditions for growth, to a large degree not understood. Data are presented in this paper to show: (1) The changes in permeability of leaf tissue to exogenous substrate and in catabolic utilization of this substrate after exposure of plants to ozone but before visible symptoms appear; (2) The change in leaf carbohydrates as a result of exposure to ozone; (3) The protective effect of red light (700 mμ) during exposure of bean plants to peroxyacetyl nitrate (PAN); (4) The correlation of sulfhydryl (SH) content in bean leaf tissue with age of plants and light regime; and (5) Effect of light regime and age of plants on incorporation of C14 from C14-PAN by bean leaf tissue.  相似文献   

7.
Acute leaf injury data are analyzed for 19 plant species exposed to ozone or sulfur dioxide. The data can be depicted by a new leaf injury mathematical model with two characteristics: (1) a constant percentage of leaf surface is injured by an air pollutant concentration that is inversely proportional to exposure duration raised to an exponent; (2) for a given exposure duration, the percent leaf injury as a function of pollutant concentration tends to fit a lognormal frequency distribution. Leaf injury as a function of laboratory exposure duration is modeled and compared with ambient air pollutant concentration measurements for various averaging times to determine which exposure durations are probably most important for setting ambient air quality standards to prevent or reduce visible leaf injury. The 8 hour average appears to be most important for most of the plants investigated for most sites, 1 hr concentrations are important for most plants at a few sites, and 3 hr S02 concentrations are important for some plants, especially those exposed to isolated point sources of the pollutant. The 1, 3, and 8 hr threshold injury concentrations are listed for each of the 19 plant species studied. To prevent or reduce acute leaf injury, fixed, nonoverlapping ambient air quality measurements and standards are recommended for averaging times of 1, 3, and 8hr.  相似文献   

8.
During April 1999 and March 2000, intensive field campaigns were performed on a mid-level mountain (Rax, 1644 m a.s.l.) in Central Europe both under out-of-cloud and in-cloud conditions. The black carbon (BC) content of both aerosol and cloud water as well as BC scavenging efficiencies of Rax clouds were measured. As a tracer for the non-carbonaceous aerosol, sulfate was used. Although BC concentrations on Rax were low (April 1999 out-of-cloud average: 0.43 μg/m3, March 2000: 0.72 μg/m3), the BC mass fraction of the aerosol was fairly high (1999: 3.5%, 2000: 6.4%). Average BC concentrations in cloud water were 1.09 μg/ml (1999) and 1.4 μg/ml (2000). These values are far higher than literature values, but comparable to those found in an earlier study (J. Geophys. Res. 105 (D20) (2000) 24637) at a high-level mountain (Sonnblick, 3106 m a.s.l.) some 200 km distant from Rax. The average BC scavenging efficiency of the Rax clouds in March 2000 was 0.54. The increase of scavenging efficiency with increasing liquid water content of the clouds found earlier on Sonnblick for sulfate and aerosol carbon (J. Atmos. Chem 35 (2000) 33), organic carbon (J. Geophys. Res. 105 (2000) 19857), and BC (J. Geophys. Res. 105 (D20) (2000) 24637) was also confirmed on Rax.  相似文献   

9.
While the ciliary activity in the airways of rats exposed to sulfur dioxide at low concentration has been studied repeatedly, the effects of chronic exposure to realistic levels of sulfur dioxide and particulates has not been determined. This paper describes the response of white albino rats to the inhalation of low concentrations of sulfur dioxide while exposed to relatively high concentrations of an inert dust. Test results indicate that no change is found in the ciliary activity or the relative number of dust cells in the alveolar structure of rats exposed to 1 ppm of sulfur dioxide and 1 mg/m3 of a graphite dust.  相似文献   

10.
This study characterized the dry deposition flux and dry deposition velocity (Vd) of metallic elements attached on particulate matter. Specifically, large particles (>10 μm), coarse particles (10 μm~2.5 μm), and fine particles (<2.5 μm) were studied at the Gong Ming Junior High School (Taichung Airport) and Taichung Harbor sampling sites in central Taiwan. Ambient air samples were collected to determine total suspended particulate matter (TSP), dry deposition plate (DDP), Vd, coarse particulate matter (PM2.5–10) and fine particulate matter (PM2.5), and metallic elements concentrations at the Airport and Taichung Harbor sites between June 17, 2013, and November 14, 2013. The results revealed that the average TSP, DDP, Vd, PM2.5–10, and PM2.5 particulate at the Airport were 54.55 (μg/m3), 902.25 (μg/m2-min), 17.11 (m/sec), 0.003 (μg/m3), and 0.010 (μg/m3), respectively; while these values at Taichung Harbor were 63.66 (μg/m3), 539.69 (μg/m2-min), 9.94 (m/sec), 0.003 (μg/m3), and 0.014 (μg/m3), respectively. In addition, the results showed that the average Cu and Pb concentrations were higher than Cr, Ni, and Cd for both the airport and harbor sampling sites. Furthermore, Cr, N, Cu, Cd, and Pb had the highest average concentrations versus those reported for other study areas, with one exception: The results obtained in Kacanik, Kosovo, during 2005. The average metallic elements concentrations order was Cu > Pb > Cr > Ni > Cd.  相似文献   

11.
The sources of submicrometer particulate matter (PM1) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM1 mass concentrations (average 11.6 ± 5.7 µg/m3) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM1 (average 4.4 ± 3.3 µg/m3), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA.

Implications: This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM1) in greater Houston. The data set indicates substantial spatial variations in PM1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM1. These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM1 from automobiles and industry but also to reduce the emissions of important secondary PM1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone.  相似文献   


12.
A number of literatures have documented adverse health effects of exposure to fine particulate matter (PM2.5), and secondary sulfate aerosol and black carbon may contribute to health impacts of PM2.5 exposure. We designed an exposure system to generate sulfate and traffic soot particles, and assessed the feasibility of using it for human exposure assessment in a pilot human exposure study. In the designed exposure system, average mass concentrations of generated sulfate and soot particles were 74.19μg/m3 and 11.54μg/m3 in the chamber and did not vary significantly during two-hour human exposure sessions. The size ranges of generated sulfate were largely between 20 to 200 nm, whereas those of generated soot particles were in the size ranges of 50 to 200nm. Following two-hour exposure to generated sulfate and soot particles, we observed significant increases in fractional exhaled NO (FeNO) in young and health subjects. Building on established human exposure system and health response follow-up methods, future full-scale studies focusing on the effects of mixed particulates and individual PM2.5 components would provide data in understanding the underpinning cardio-respiratory outcomes in relation to air pollution mixture exposure.

Implications: Controlled exposure is a useful design to measure the biological responses repeatedly following particulate exposures of target components and set exposure at target levels of health concerns. Our study provides rational and establishes method for future full-scale studies to focus on examining the effects of mixed particulates and individual PM2.5 components.  相似文献   


13.
A kinetic mechanism to predict secondary organic aerosol (SOA) formation from the photo-oxidation of toluene was developed. Aerosol phase chemistry that includes nucleation, gas–particle partitioning and particle-phase reactions as well as the gas-phase chemistry of toluene and its degradation products were represented. The mechanism was evaluated against experimental data obtained from the University of North Carolina (UNC) 270 m3 dual outdoor aerosol smog chamber facility. The model adequately simulates the decay of toluene, the nitric oxide (NO) to nitrogen dioxide (NO2) conversion and ozone formation. It also provides a reasonable prediction of SOA production under different conditions that range from 15 to 300 μg m−3. Speciation of simulated aerosol material shows that up to 70% of the aerosol mass comes from oligomers and polymers depending on initial reactant concentrations. The dominant particle-phase species predicted by the mechanism are glyoxal oligomers, ketene oligomers from the photolysis of the toluene OH reaction product 2-methyl-2,4-hexadienedial, organic nitrates, methyl nitro-phenol analogues, C7 organic peroxides, acylperoxy nitrates and for the low-concentration experiments, unsaturated hydroxy nitro acids.  相似文献   

14.
Young asthmatic adult volunteers (N = 27) were exposed in an environmental chamber to sulfuric acid aerosol at concentrations near 0, 122, 242, and 410 μg/m3, in purified background air at 22° C and 50 percent relative humidity. The polydisperse aerosol had a mass median aerodynamic diameter near 0.6 μm. Exposures occurred in random order at one-week intervals. Each lasted 1 h, during which subjects exercised (mean ventilation 42 L/min) and rested during alternate 10-min periods. Specific airway resistance and forced expiratory function were measured pre-exposure, after the initial exercise, and at end-exposure. Bronchial reactivity was determined by challenge with cold air immediately post-exposure. Symptoms were monitored during exposure for one week afterward. Exercise-induced bronchospasm was observed under all conditions. Physiologic and symptom changes possibly attributable to sulfuric acid exposure were small and not statistically significant. Our largely negative results contrast with positive findings elsewhere at lower acid doses. Possible explanations include different clinical characteristics of subjects and different routes of breathing.  相似文献   

15.
采用水蒸气、氨气、过氧化氢气雾和臭氧4种气体对沙林模拟剂氟磷酸二异丙酯(DFP)进行降解研究,发现臭氧对DFP具有较好的降解作用,在流量200 L/h,DFP初始浓度50 mg/m3时,降解率最高可达56.1%。对高浓度DFP(大于80 mg/m3)进行降解研究时,等离子体单独作用最高降解率为89%,而添加臭氧后的降解率都在95%以上。计算得到臭氧作用的能量利用率为0.05 mg/(W·h),等离子体的能量利用率为0.55 mg/(W·h),而添加臭氧后的等离子体能量利用率为0.68 mg/(W·h)明显高于臭氧和等离子体能量利用率之和,因此对高浓度DFP进行处理时,臭氧与等离子体存在耦合作用。对等离子体和臭氧耦合等离子体降解DFP反应进行了产物分析,发现主要的降解产物基本一致,但是臭氧的存在能使降解更加彻底。  相似文献   

16.
Respirable carbon or fly ash particles are suspected to increase the respiratory toxicity of coexisting acidic air pollutants, by concentrating acid on their surfaces and so delivering it efficiently to the lower respiratory tract. To investigate this issue, we exposed 15 healthy and 15 asthmatic volunteers in a controlled- environment chamber (21°C, 50 percent relative humidity) to four test atmospheres: (i) clean air; (ii) 0.5-μm H2SO4 aerosol at =100 μg/m3, generated from water solution; (iii) 0,5-μm carbon aerosol at =250 μg/m3, generated from highly pure carbon black with specific surface area comparable to ambient pollution particles; and (iv) carbon as in (iii) plus =100 μg/m3 of ultrafine H2SO4 aerosol generated from fuming sulfuric acid. Electron microscopy showed that nearly all acid in (iv) became attached to carbon particle surfaces, and that most particles remained in the sub-μm size range. Exposures were performed double-blind, 1 week apart. They lasted 1 hr each, with alternate 10-min periods of heavy exercise (ventilation =50 L/min) and rest. Subjects gargled citrus juice before exposure to suppress airway ammonia. Lung function and symptoms were measured pre-exposure, after initial exercise, and at endexposure. Bronchial reactivity to methacholine was measured after exposure. Statistical analyses tested for effects of H2SO4 or carbon, separate or interactive, on health measures. Group data showed no more than small equivocal effects of any exposure on any health measure. One individual's responses were consistent with a clinically significant excess airway constriction from H2SO4 plus carbon, and 2-3 others showed slight excess responses to the combined pollutants, but all these observations might have reflected chance variations. We conclude that coexisting carbon aerosol did not increase respiratory irritancy of H2SO4, in most healthy and asthmatic subjects exposed for 1 hr under simulated "worst-case" ambient conditions.  相似文献   

17.
Individual leaves of Phaseolus vulgaris L. were exposed for 9 h in a leaf chamber to different NH3 concentrations at different light intensities. The rates of NH3-uptake, transpiration and photosynthesis were measured simultaneously. The flux density of NH3 increased linearly with concentration in the range of 4–400μg m−3. Flux densities also increased with light intensity. Resistance analysis indicated that NH3 transport into the leaf is via the stomata: transport via the cuticle is negligible under the experimental conditions. There is no internal resistance against NH3 transport. The NH3 flux was found not to influence the photosynthesis.  相似文献   

18.
An investigation of the effect of relative humidity on aerosol formation from m-xylene and 1,3,5-trimethylbenzene photooxidation is reported. Experiments were performed in the presence and absence of ammonium sulfate seed particles (both aqueous and dry) to ascertain the effect of partitioning of oxidation products into a strong electrolytic solution or onto dry crystalline seed particles. In marked contrast to the α-pinene/ozone system, the final measured secondary organic aerosol yield was unaffected by the presence of gas-phase or liquid-phase water at relative humidities (RH) up to 50%. The hygroscopic nature of the aerosol generated upon photooxidation of m-xylene and 1,3,5-trimethylbenzene was examined; the hygroscopicity of the aerosol at 85% RH for both parent organics increased with the extent of the reaction, indicating that the first-generation oxidation products undergo further oxidation. Limited identification of the gas- and aerosol-phase products of m-xylene and 1,3,5-trimethylbenzene photooxidation is reported. It is evident that a more complete molecular identification of aromatic photooxidation aerosol awaits analytical techniques not yet brought to bear on this problem.  相似文献   

19.
Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality.The air quality improvement that would result from the targeted sulfur dioxide (SO2) and nitrogen oxides (NOx) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30–60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM2.5 can also decline by 3–15 μg m?3 (4–25%) due to the lower SO2 and sulfate concentrations. If similar controls are implemented for NOx emissions, NOx concentrations are estimated to decrease by 30–60% as compared with the 2010 BAU scenario. The annual mean PM2.5 concentrations will also decline by 2–14 μg m?3 (3–12%). In addition, the number of ozone (O3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O3 concentrations in the summer reduced by 8–30 ppb.  相似文献   

20.
Seawater, atmospheric dimethylsulfide (DMS) and aerosol compounds, potentially linked with DMS oxidation, such as methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO42?) were determined in the North Yellow Sea, China during July–August, 2006. The concentrations of seawater and atmospheric DMS ranged from 2.01 to 11.79 nmol l?1 and from 1.68 to 8.26 nmol m?3, with average values of 6.20 nmol l?1 and 5.01 nmol m?3, respectively. Owing to the appreciable concentration gradient, DMS accumulated in the surface water was transferred into the atmosphere, leading to a net sea-to-air flux of 6.87 μmol m?2 d?1 during summer. In the surface seawater, high DMS values corresponded well with the concurrent increases in chlorophyll a levels and a significant correlation was observed between integrated DMS and chlorophyll a concentrations. In addition, the concentrations of MSA and nss-SO42? measured in the aerosol samples ranged from 0.012 to 0.079 μg m?3 and from 3.82 to 11.72 μg m?3, with average values of 0.039 and 7.40 μg m?3, respectively. Based on the observed MSA, nss-SO42? and their ratio, the relative biogenic sulfur contribution was estimated to range from 1.2% to 11.5%, implying the major contribution of anthropogenic source to sulfur budget in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号