首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
On April 16, 1970, the States of New Jersey, New York, and Connecticut designated the Interstate Sanitation Commission as the official Planning and Coordinating Agency for the Federally-designated New Jersey-New York-Connecticut Air Quality Control Region (a seventeen-county tri-state area). The Commission is the first such agency to function in this capacity.  相似文献   

2.
We evaluated the Danish AirGIS air quality and exposure model system using air quality measurement data from New York City in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Measurements were used from three US EPA Air Quality System (AQS) monitoring stations and a comprehensive MESA Air measurement campaign including about 150 different locations and about 650 samples of about 2 week measurements of NOx, NO2 and PM2.5. AirGIS is a deterministic exposure model system based on the dispersion models Operational Street Pollution Model (OSPM) and the Urban Background Model (UBM). The UBM model reproduced the annual levels within 1–26% depending on station and pollutant at the three urban background EPA monitor stations, and generally reproduced well the seasonal and diurnal variation. The full model with OSPM and UBM reproduced the MESA Air measurements with a correlation coefficient of r2 = 0.51 for NOx, r2 = 0.28 for NO2 and r2 = 0.73 for PM2.5.  相似文献   

3.
We developed regression equations to predict fine particulate matter (PM2.5) at air monitoring locations in the New York City region using data on nearby traffic and land use patterns. Three-year averages (1999–2001) of PM2.5 at US Environmental Protection Agency (EPA) monitors in the 28 counties including and surrounding New York City were calculated using daily data from the EPA's Air Quality Subsystem. As the secondary contribution to PM2.5 concentrations is lowest in the winter, we also calculated and modeled average winter 2000 PM2.5 to conduct a preliminary evaluation of model sensitivity to source contribution. Candidate predictor variables included traffic, land use, census and emissions data from local, state and national sources and were tabulated for a series of circular buffer regions at varying distances around the monitors using a geographic information system. In total, more than 25 variables at 5 different buffer distances were considered for inclusion in the model. Before evaluating the variables we removed several samples from the modeling for validation. For comparison and validation purposes we computed both a model using data for the full 28-county region as well as a more urbanized 9-county region. We found that traffic within a buffer of 300 or 500 m explains the greatest proportion of variance (37–44%) in all 3 models. Measures of urbanization, specifically population density, explain a significant amount of the residual variation (7–18%) after including a traffic variable. Finally, a measure of industrial land use further improves the 28-county and 9-county models based on the 3-yr annual averages, explaining an additional 4% and 11% of the variation, respectively, while vegetative land use improves the winter model explaining an additional 6%. The final models predicted well at validation locations. In total, the final land use regression models explain between 61% and 64% of the variation in PM2.5.  相似文献   

4.
Abstract

The temporal and spatial characteristics of ground-level (tropospheric) O3 measured at 10 monitoring stations in Connecticut were studied from 1981 to 1997. To detect the O3 trend caused by changes in precursor emissions, moving average filters and a linear least-squared regression model were used to eliminate the short-term variation and effects of temperature from raw time-series O3 data. The results showed a significant decrease in the number of days exceeding the National Ambient Air Quality Standards (NAAQS) and a small change in total O3 concentration. The analysis indicated that the variation of daily maximum O3, caused by changes in emissions, explained more than 10% of the total O3 variation in Bridgeport and East Hartford during the past 17 years. Meanwhile, a strong weekly cycle was also found in O3 time-series data, resulting in lower O3 concentration in urban areas than in nonur-ban areas, implying that land use and land cover have impacts on the spatial distribution of ground-level O3 in Connecticut.  相似文献   

5.
This study was undertaken to identify seasonal and source effects on the par-ticulate contaminants of the New York City atmosphere and ultimately to relate the concentrations of these contaminants to the tissue concentrations in residents of New York City. Continual weekly samples of particulates have been collected at three stations in the New York area on 8 by 10 in. glass fiber filters at a flow rate of 20 cfm.

The sample is ashed with a Tracerlab Low Temperature Asher and leached with nitric acid. Metals analyzed by the Atomic Absorption method include Pb, V, Cd, Cr, Cu, Mn, Ni, and Zn. Lead-210, total particulate, and benzene and acetone soluble organic material are also determined.

The data have been related to various meteorological parameters over a one year period to define significant seasonal and source influences, as well as site to site variations. Very significant inverse correlations to temperature are obtained for suspended particulates, vanadium, and nickel at both Manhattan and Bronx sites. Particulates show a less significant inverse correlation to temperature In lower Manhattan. Oil-fired space heating sources appear to account for as much as 50% of the particulates in the Bronx at the peak demand period.

Lead, copper, and cadmium show a general inverse correlation to average wind speed, and a direct correlation to temperature. The latter is most likely due to an inverse relation between wind speed and temperature. The heating season input for particulates, vanadium, and nickel is so great as to overcome most of the dilution effect due to winds. The other elements having more constant nonseasonal inputs, definitely reflect the effects of the wind.

The most significant site effect occurs with cadmium, which has a concentration in lower Manhattan three times that of the Bronx over a period of six to seven months in the summer and fall. The differences observed for cadmium and particulates may be explained by emission source factors which have not as yet been studied.  相似文献   

6.
Meteorological data, particularly 850-MB level temperatures, for Fort Totten, New York (1980) and Atlantic City, New Jersey (1981-1988) were examined for any relationship to seasonal ozone levels. Other radiosonde stations in the Northeast were utilized for 1983 and 1986, years of widely differing ozone levels. Statistics for selected parameters and years are presented.

Emphasis is placed on recurring warm temperature regimes in high ozone years. Successive occurrences or episodes of high temperatures characterize seasonally high ozone years. Seasonally persistent high temperatures are related to seasonally chronic high ozone. An example is presented relating the broad-scale climatologlcally anomalous pattern of high temperatures to anomalous circulation patterns at the 700-MB level.  相似文献   

7.
Ozone Transport     
Elevated concentrations of ozone, often above the national ambient air quality standard for photochemical oxidants, have been measured in both urban and rural areas of Connecticut. One such episode took place on June 10, 1974. Ozone levels, after stabilizing at values slightly above the standard (i.e., 80 to 110 ppb; Connecticut generated ozone concentrations), rose sharply late in the afternoon reaching concentrations as high as 310 ppb (almost 4 times the standard) in Hartford. The trajectory of the air mass, which arrived in Hartford at the time of maximum O3 occurence, had its origin in the metropolitan New York area during the early morning rush hour on the episode day. This illustrates that the advective transport of O3 and O3 precursors into Connecticut from New York are probably responsible for a significant portion (approximately two-thirds) of the elevated O3 concentrations measured throughout Connecticut on days when winds are from the south-southwest direction. The fact that peak O3 levels occur late in the afternoon, several hours after maximum sunlight intensity, reinforces the conclusion that excessive O3 concentrations developed as O3 and ozone precursors were generated in the vicinity of New York City and then drifted inland into Connecticut on the afternoon sea breeze.

It appears to be unrealistic to develop a hydrocarbon control strategy for Connecticut in order to meet the photochemical oxidant ambient air quality standard when O3 and/or ozone precursors ad-vectively transported into the State cause oxidant levels to exceed the standard. The complete cessation of all anthropogenic hydrocarbon emissions in Connecticut would not necessarily assure that the standard would be attained here. The implication is that a regional (i.e., the eastern part of the United States) hydrocarbon control strategy is needed to reduce adequately ozone formation and transport so as to allow Connecticut to meet the current oxidant standard.  相似文献   

8.
A comprehensive and comparative model validation of two EPA models for short-term SO2 concentrations was performed. The two models tested were RAM (Urban version) and PTMTP (Terrain version). Both are multiple source, multiple receptor gaussian plume models, recommended in the EPA Guideline On Air Quality Models. 1 The principal difference between the two models is in their use of empirical dispersion coefficients. It was because of the potential for markedly different predicted maximum SO2 concentrations, and the absence of any testing data on the RAM model, that the validation analysis was undertaken. The current study utilized a full year of air quality data from monitoring sites in two Indiana cities, Michigan City and Indianapolis. Cumulative frequency distributions for each site and model were prepared and comparisons made. The results indicate that the RAM (Urban) model was highly inaccurate in predicting maximum short-term SO2 concentrations. The PTMTP model, although conservative in its estimates, produces results which more closely resemble the distribution of observed SO2 concentrations. The body of information presented in this paper is directed to environmental scientists responsible for air quality modeling, and to those persons who set policy on the use of models in air quality studies.  相似文献   

9.
Neither time nor space permitted full reporting of the Symposium on Air Quality Criteria, held June 4-5, 1968, in New York City. The Symposium was sponsored by the Air Pollution Control Association, the American Industrial Hygiene Association, the American Petroleum Institute, and the Industrial Medical Association and its educational affiliate, The Occupational Health Institute.

Published here are excerpts from, or author’s abstracts of, the eight principal papers presented at the Symposium.

Not included are the prepared discussions which followed the delivery of the papers.

A full proceedings, including prepared discussions, general discussions, and summation, will be published in the September issue of the Journal of Occupational Medicine, 55 E. Washington Street, Chicago, Illinois 60602.  相似文献   

10.
The simple ATDL urban dispersion model Is based on the formula Xo(g/m3) = CO(g/m2s)/U(m/s). The diurnal variation of the stability factor C, which can be thought of as the width of the urban area divided by the vertical dispersion of the pollution cloud, has not before been satisfactorily estimated. Using observed diurnal variations of CO concentrations and traffic frequencies reported by DeMarrais of the EPA for many stations in the states of Maryland, New Jersey, and Colorado, and using wind data from these states, hourly values of C - XoU/Q were calculated. The ratio of C to the daily average C is found to equal about 2.5 at 4 a.m., drops to about 0.5 by 8 a.m., and remains at 0.5 until about 6 p.m.., when it starts to climb slowly again. Application of this new stability factor to independent CO data from Los Angeles yields correlations between measured and predicted concentrations of about 0.7.  相似文献   

11.
The purpose of this paper is to demonstrate the use of some statistical methods for examining trends in ambient ozone air quality downwind of major urban areas. To this end, daily maximum 1 -hr ozone concentrations measured over New Jersey, metropolitan New York City and Connecticut for the period 1980 to 1989 were assembled and analyzed. This paper discusses the application of the bootstrap method, extreme value statistics and a nonparametric test for evaluating trends in urban ozone air quality. The results indicate that although there is an improvement in ozone air quality downwind of New York City, there has been little change in ozone levels upwind of New York City during this ten-year period.  相似文献   

12.
Abstract

The U.S. Environmental Protection Agency in 1997 revised the 1-hr ozone (O3) National Ambient Air Quality Standard (NAAQS) to one based on an 8-hr average, resulting in potential nonattainment status for substantial portions of the eastern United States. The regulatory process provides for the development of a state implementation plan that includes a demonstration that the projected future O3 concentrations will be at or below the NAAQS based on photochemical modeling and analytical techniques.

In this study, four photochemical modeling systems, based on two photochemical models, Community Model for Air Quality and the Comprehensive Air Quality Model with extensions, and two emissions processing models, Sparse Matrix Optimization Kernel for Emissions and Emissions Modeling System, were applied to the eastern United States, with emphasis on the northeastern Ozone Transport Region in terms of their response to oxides of nitrogen and volatile organic carbon-focused controls on the estimated design values. With the 8-hr O3 NAAQS set as a bright-line test, it was found that a given area could be termed as being in or out of attainment of the NAAQS depending upon the modeling system. This suggests the need to provide an estimate of model-to-model uncertainty in the relative reduction factor (RRF) for a better understanding of the uncertainty in projecting the status of an area's attainment. Results indicate that the model-to-model differences considered in this study introduce an uncertainty of the future estimated design value of ~3–5 ppb.  相似文献   

13.
Particulate emission from diesel engines is one of the most important pollutants in urban areas. As a result, particulate emission control from urban bus diesel engines using particle filter technology is being evaluated at several locations in the US. A project entitled "Clean Diesel Air Quality Demonstration Program" has been initiated by the New York City Metropolitan Transit Authority (MTA) under the supervision of New York State Department of Environmental Conservation and with active participation from Johnson Matthey, Corning, Equilon, Environment Canada and RAD Energy. Under this program, several MTA transit buses with DDC Series 50 engines were equipped with Continuously Regenerating Technology (CRTTM) particulate filter systems and have been operated with ultra low sulfur diesel (<30 ppm S) in transit service in Manhattan since February 2000. These buses were evaluated over a 9-month period for durability and maintainability of the particulate filter. In addition, an extensive emissions testing program was carried out using transient cycles on a chassis dynamometer to evaluate the emissions reductions obtained with the particle filter. In this paper, the emissions testing data from the Clean Diesel Air Quality Demonstration Program are discussed in detail.  相似文献   

14.
A new complex source microcomputer model has been developed for use at civil airports and Air Force bases. This paper describes both the key features of this model and its application in evaluating the air quality impact of new construction projects at three airports: one in the United States and two in Canada.

The single EDMS model replaces the numerous models previously required to assess the air quality impact of pollution sources at airports. EDMS also employs a commercial data base to reduce the time and manpower required to accurately assess and document the air quality impact of airfield operations.

On July 20, 1993, the U.S. Environmental Protection Agency (EPA) issued the final rule (Federal Register, 7/20/93, page 38816) to add new models to the Guideline on Air Quality Models. At that time EDMS was incorporated into the Guideline as an Appendix A model.  相似文献   

15.
Abstract

This paper demonstrates how wind tunnel modeling data that accurately describe plume characteristics near an unconventional emission source can be used to improve the near-field downwind plume profiles predicted by conventional air pollution dispersion models. The study considers a vertical, cylindrical-shaped, elevated bin similar to large product storage bins that can be found at many industrial plant sites. Two dispersion models are considered: the U.S. Environmental Protection Agency's ISC2(ST) model and the Ontario Ministry of the Environment and Energy's GAS model. The wind tunnel study showed that plume behavior was contrary to what was predicted using conventional dispersion models such as ISC2(ST) and GAS and default values of input parameters. The wind tunnel data were used to develop a protocol for correcting the dispersion models inputs, resulting in a substantial improvement in the accuracy of the dispersion estimates.  相似文献   

16.
Air pollution emission inventories are the basis for air quality assessment and management strategies. The quality of the inventories is of great importance since these data are essential for air pollution impact assessments using dispersion models. In this study, the quality of the emission inventory for fine particulates (PM2.5) is assessed: first, using the calculated source contributions from a receptor model; second, using source apportionment from a dispersion model; and third, by applying a simple inverse modelling technique which utilises multiple linear regression of the dispersion model source contributions together with the observed PM2.5 concentrations. For the receptor modelling the chemical composition of PM2.5 filter samples from a measurement campaign performed between January 2004 and April 2005 are analysed. Positive matrix factorisation is applied as the receptor model to detect and quantify the various source contributions. For the same observational period and site, dispersion model calculations using the Air Quality Management system, AirQUIS, are performed. The results identify significant differences between the dispersion and receptor model source apportionment, particularly for wood burning and traffic induced suspension. For wood burning the receptor model calculations are lower, by a factor of 0.54, but for the traffic induced suspension they are higher, by a factor of 7.1. Inverse modelling, based on regression of the dispersion model source contributions and the PM2.5 concentrations, indicates similar discrepancies in the emissions inventory. In order to assess if the differences found at the one site are generally applicable throughout Oslo, the individual source category emissions are rescaled according to the receptor modelling results. These adjusted PM2.5 concentrations are compared with measurements at four independent stations to evaluate the updated inventory. Statistical analysis shows improvement in the estimated concentrations for PM2.5 at all sites. Similarly, inverse modelling is applied at these independent sites and this confirms the validity of the receptor model results.  相似文献   

17.
18.
Abstract

The National Oceanic and Atmospheric Administration recently sponsored the New England Forecasting Pilot Program to serve as a “test bed” for chemical forecasting by providing all of the elements of a National Air Quality Forecasting System, including the development and implementation of an evaluation protocol. This Pilot Program enlisted three regional-scale air quality models, serving as prototypes, to forecast ozone (O3) concentrations across the northeastern United States during the summer of 2002. A suite of statistical metrics was identified as part of the protocol that facilitated evaluation of both discrete forecasts (observed versus modeled concentrations) and categorical forecasts (observed versus modeled exceedances/nonexceedances) for both the maximum 1-hr (125 ppb) and 8-hr (85 ppb) forecasts produced by each of the models. Implementation of the evaluation protocol took place during a 25-day period (August 5–29), utilizing hourly O3 concentration data obtained from over 450 monitors from the U.S. Environment Protection Agency’s Air Quality System network.  相似文献   

19.
Abstract

In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for par-ticulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives. A simple methodology is provided here for the selection of a neighborhood-scale site for meeting either of the two objectives identified for PM monitoring. This methodology is based on analyzing middle-scale (from 100 to 500 m) data from within the area of interest. The required data can be obtained from widely available dispersion models and emissions databases.

The performance of the siting methodology was evaluated in a neighborhood-scale field study conducted in Hudson County, NJ, to characterize the area’s inhalable particulate (PM10) concentrations. Air monitors were located within a 2- by 2-km area in the vicinity of the Lincoln Tunnel entrance in Hudson County. Results indicate the siting methodology performed well, providing a positive relationship between the predicted concentration rank at each site and the actual rank experienced during the field study. Also discussed are factors that adversely affected the predictive capabilities of the model.  相似文献   

20.
A network of eight monitoring stations was established to study the atmospheric nitrogen concentration and deposition in the State of Connecticut. The stations were classified into urban, rural, coastal and inland categories to represent the geographical location and land use characteristics surrounding the monitoring sites. Nitrogen species including nitrate, ammonium, nitric acid vapor and organic nitrogen in the air and precipitation were collected, analyzed and used to infer nitrogen concentrations and dry and wet deposition flux densities for the sampling period from 1997 through 1999, with independently collected meteorological data. Statistical analyses were conducted to evaluate the spatial variations of atmospheric concentration and deposition fluxes of total nitrogen in Connecticut. A slightly higher atmospheric concentration of total nitrogen was observed along the Connecticut coastline of Long Island Sound compared to inland areas, while the differences of nitrogen deposition fluxes were insignificant between coastal and inland sites. The land use characteristics surrounding the monitoring sites had profound effects on the atmospheric nitrogen concentration and dry deposition flux. The ambient nitrogen concentration over the four urban sites was averaged 38.9% higher than that over the rural sites, resulting a 58.0% higher dry deposition flux in these sites compared to their rural counterparts. The local industrial activities and traffic emissions of nitrogen at urban areas had significant effects on the spatial distribution of atmospheric nitrogen concentration and dry deposition flux in the State. Wet and total deposition fluxes appeared to be invariant between the monitoring sites, except for high flux densities measured at Old Greenwich, a monitoring station near to and downwind of the New York and New Jersey industrial complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号