首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimates indicate that approximately 2.6% of the total atmospheric pollution in this country may originate as a result of refuse disposal. Although this may appear to be a comparatively low figure, it is important to note that refuse disposal is a universal problem: wherever we go, be the area urban, or rural, waste must be disposed of and in most cases the methods of disposal produce air pollution. Tabulated data indicates that the per capita rate of production has been increasing annually. In the city of Hartford, the quantity of refuse that is being burned in the municipal incinerator has been increasing at a rate of 5%/year. A comparison of the air pollutants emitted from open burning at a refuse disposal area, backyard burning and incineration of refuse in a municipal multiple chamber incinerator indicates that the quantity of pollutants emitted from the latter source is much less than those emitted from the other sources. The effect of having legislation with, enforcement authority and a program for regular inspections, has resulted in marked improvements of refuse disposal operations in Connecticut since June, 1966. Most of the burning still being done at refuse disposal areas is limited to only brush and demolition material. A multi-purpose incinerator is presently under construction in the city of Stamford, Conn. It is planned to demonstrate that not only bulky wastes and auto bodies, but also liquid wastes can be burned in the same unit without creating any adverse effect on the environment. This incinerator will be provided with an electrostatic precipitator for removing particulate emissions.

New methods of refuse disposal which are being tried are briefly described in this paper. All these methods tend to reduce or eliminate air pollution along with eliminating the health hazards normally related with open face dump type of operations.

The continual technological progress and improvements in methods of manufacture, packaging, and marketing of consumer products along with the economic, population, and industrial growth of the nation has resulted in an ever-mounting increase and change in the characteristics of the mass of material being discarded by the purchaser. In May 1967, a Three-State Conference on Air Resource Management was held at the City College of the City University of New York. This conference consisted of a number of panels or committees which discussed specialized areas of the problem of air pollution and its control. A portion of the introductory remarks from the panel report of the Solid Waste Committee1 is as follows:  相似文献   

2.
针对城市生活垃圾焚烧发电的排放问题,以重庆市某垃圾焚烧炉为原始模型,在炉膛两侧炉壁的适当位置设置二次配风口,并采用CFD(计算流体动力学)方法对炉膛内气体的二次燃烧过程进行数值模拟。通过观察对比有无二次配风以及二次配风口位置不同时炉膛内气体的温度场、气体在炉膛内的停留时间分布以及炉膛内气体的混合程度和湍动能等,重点分析了二次风在气体燃烧过程中所起的作用,并对2种不同二次配风口位置时抑制二恶英产生的效果进行了评价。通过对垃圾焚烧炉二次风的优化数值模拟,获得了适合本焚烧炉的比较合理的二次配风条件,可为焚烧炉的设计和改进提供一些有价值的参考。  相似文献   

3.
Heavy metals such as cadmium and lead are typically found at high levels in fly ash from refuse incinerators. In two earlier studies it was found that such heavy metals on grass or tree foliage in the vicinity of old refuse incinerators with relatively low stacks and limited or no emission control devices showed a high degree of correlation between diminishing foliar concentration and the logarithm of sampling distance from the incinerator. In the study reported here of the concentration of cadmium and lead on foliage near a modern refuse incinerator with a high stack and efficient emission controls, the foliar concentrations of the metals showed no significant diminution with sampling distance from the incinerator. Factors affecting heavy metal emissions from refuse incinerators and contamination of nearby areas are discussed.  相似文献   

4.
Despite this country’s scientific advances, most communities in the United States are still disposing of solid wastes the way they did 50 years ago. The problem is advancing faster than the solution. Less than half the cities in this country with populations over 2500 dispose of their wastes by an approved sanitary and nuisance-free method. Do you realize that every 60 seconds people in the United States drop 251 tons of trash into their garbage cans. At the end of the day, 362,000 tons have accumulated. This means each of the 190 million people in the US disposes of 43½ lb of rubbish daily. By the year 2000 population is expected to double, while the per capita rate of increase in refuse production rises about 2% annually.

As the population booms and spreads to the suburbs, and suburbs expand into further suburbs, we will rapidly use up the land once used for waste disposal. Thus, sanitary landfill sites will disappear because by the year 2000 three-fourths of our population will live in urban areas.

The answer to this enormous problem faced by large and small communities is central incineration. Only this system can provide a maximum reduction in the volume of refuse. It is for this reason that communities are turning to incineration as the best solution. However, a growing public awareness plus changing municipal, state, and federal laws necessitate the need for a modern incineration plant that incorporates the most advanced and proved method of air pollution control. Where efficiencies of 60 to 80% were acceptable in the past, 90 to 95% are sought at present, and soon 96 to 99% will be required.

This paper deals with the effective control of particulate emissions from municipal incinerator exhaust gases.  相似文献   

5.
《Chemosphere》1986,15(5):557-561
The concentration of TCDD at different points of an urban incinerator were analyzed and the emission of TCDD and TCDF from the incinerator were studied in relation to the kind of refuse burned.  相似文献   

6.
C Lu  M R Lin  J Lin 《Chemosphere》2001,44(2):173-180
The system performance of a trickle-bed air biofilter (TBAB) for treating N,N-dimethylacetamide (DMAC) waste gas was investigated under different gas flow rates and influent concentrations. In the pseudo-steady-state conditions, the DMAC elimination capacity increased but the removal efficiency decreased as the influent loading increased. More than 90% and 80% DMAC removal efficiencies are achieved for influent loadings below 20.2 and 34.5 g DMAC/m3/h, respectively. The TBAB appears to be an effective treatment process for controlling DMAC emission with low-to-medium loadings and the effectiveness could be maintained over a long-period operation.  相似文献   

7.
In New York State, the calculation of air contaminant emissions from a variety of sources is an essential part of comprehensive air pollution studies. The tables used to calculate emissions were obtained from an extensive literature search and modified to apply to New York State conditions. For example, sulfur dioxide emission factors for coal were selected to reflect the average sulfur content of the coal sold in New York State. Since the literature contains a wide array of emission factors, it was necessary to evaluate the factors and select those which would be most appropriate for the techniques used in conducting the comprehensive studies in New York State. This paper does not present the emission tables themselves but does outline the development of such tables for use in nonprocess calculations, i.e., combustion for heat and power of bituminous and anthracite coal, distillate and residual oil, natural and bottled gas; combustion of gasoline and diesel in internal combustion engines; burning of refuse in dumps and incinerators; and evaporation of gasoline from marketing operations.  相似文献   

8.
There has been considerable progress in developing treatment systems for point sources of minewater pollution in recent years; however, there remains a knowledge gap in the characterisation and remediation of diffuse minewater sources. Data are presented from the River Gaunless catchment, a historically heavily coal mined catchment in the northeast of England. Instream iron (Fe) loadings were monitored alongside loadings arising from point minewater discharges over a 12-month period to assess the dynamic importance of diffuse sources of minewater pollution. In low flow, diffuse sources account for around 50% of instream loading, a proportion which increases to 98% in high flow conditions. The low flow sources appear to be dominated by direct discharge of contaminated groundwater to surface waters in lower reaches of the catchment. In high flow, resuspended Fe-rich sediments, which are both naturally occurring and derived from historic mining, become the dominant diffuse source of Fe in the water column.  相似文献   

9.
ABSTRACT

This work studied the daily variability of mobile sources in rural and urban areas, in and around the Atlanta Metropolitan Area. Traffic counter data collected during the 1992 Southern Oxidants Study Atlanta Intensive Study were used to analyze the spatial and temporal distribution of traffic volume. A simple method to study the daily variability of mobile emissions from the different types of urban and rural roads is presented. The method is based on hourly traffic volume data and emission factors and it has been generalized to describe the daily variability of mobile emissions for urban and rural areas and for the whole modeling domain. Implications of this study for improving mobile emission inventories are also discussed.  相似文献   

10.
The computer model Industrial Source Complex Short Term (ISCST) was used to study the stack emissions from a refuse Incinerator proposed for the island of Bermuda. The model predicts that the highest ground level pollutant concentrations will occur near Prospect, 800 m to 1000 m due south of the stack. We installed a portable laboratory and instruments at Prospect to begin making air quality baseline measurements. By comparing the model’s estimates of the incinerator contribution to the background levels measured at the site we predict that stack emissions will not cause an Increase In TSP or SO2. The incinerator will be a significant source of HCI to Bermuda air with ambient levels approaching air quality guidelines.  相似文献   

11.
In many metropolitan areas, traffic is the main source of air pollution. The high concentrations of pollutants in streets have the potential to affect human health. Therefore, estimation of air pollution at the street level is required for health impact assessment. This task has been carried out in many developed countries by a combination of air quality measurements and modeling. This study focuses on how to apply a dispersion model to cities in the developing world, where model input data and data from air quality monitoring stations are limited or of varying quality. This research uses the operational street pollution model (OSPM) developed by the National Environmental Research Institute in Denmark for a case study in Hanoi, the capital of Vietnam. OSPM predictions from five streets were evaluated against air pollution measurements of nitrogen oxides (NO(x)), sulfur dioxide (SO2), carbon monoxide (CO), and benzene (BNZ) that were available from previous studies. Hourly measurements and passive sample measurements collected over 3-week periods were compared with model outputs, applying emission factors from previous studies. In addition, so-called "backward calculations" were performed to adapt the emission factors for Hanoi conditions. The average fleet emission factors estimated can be used for emission calculations at other streets in Hanoi and in other locations in Southeast Asia with similar vehicle types. This study also emphasizes the need to further eliminate uncertainties in input data for the street-scale air pollution modeling in Vietnam, namely by providing reliable emission factors and hourly air pollution measurements of high quality.  相似文献   

12.
Evaluation of Indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters.

The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA’s Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed In large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA’s IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on “sink” surfaces.  相似文献   

13.
Air quality in cities is the result of a complex interaction between natural and anthropogenic environmental conditions. Air pollution in cities is a serious environmental problem – especially in the developing countries. The air pollution path of the urban atmosphere consists of emission and transmission of air pollutants resulting in the ambient air pollution. Each part of the path is influenced by different factors. Emissions from motor traffic are a very important source group throughout the world. During transmission, air pollutants are dispersed, diluted and subjected to photochemical reactions. Ambient air pollution shows temporal and spatial variability. As an example of the temporal variability of urban air pollutants caused by motor traffic, typical average annual, weekly and diurnal cycles of NO, NO2, O3 and Ox are presented for an official urban air-quality station in Stuttgart, southern Germany. They are supplemented by weekly and diurnal cycles of selected percentile values of NO, NO2, and O3. Time series of these air pollutants give information on their trends. Results are discussed with regard to air pollution conditions in other cities. Possibilities for the assessment of air pollution in cities are shown. In addition, a qualitative overview of the air quality of the world's megacities is given.  相似文献   

14.
Abstract

It is vital to forecast gas and particle matter concentrations and emission rates (GPCER) from livestock production facilities to assess the impact of airborne pollutants on human health, ecological environment, and global warming. Modeling source air quality is a complex process because of abundant nonlinear interactions between GPCER and other factors. The objective of this study was to introduce statistical methods and radial basis function (RBF) neural network to predict daily source air quality in Iowa swine deep-pit finishing buildings. The results show that four variables (outdoor and indoor temperature, animal units, and ventilation rates) were identified as relative important model inputs using statistical methods. It can be further demonstrated that only two factors, the environment factor and the animal factor, were capable of explaining more than 94% of the total variability after performing principal component analysis. The introduction of fewer uncorrelated variables to the neural network would result in the reduction of the model structure complexity, minimize computation cost, and eliminate model overfitting problems. The obtained results of RBF network prediction were in good agreement with the actual measurements, with values of the correlation coefficient between 0.741 and 0.995 and very low values of systemic performance indexes for all the models. The good results indicated the RBF network could be trained to model these highly nonlinear relationships. Thus, the RBF neural network technology combined with multivariate statistical methods is a promising tool for air pollutant emissions modeling.  相似文献   

15.

Chemical leak was numerically simulated for four chemical substances: benzene (light non-aqueous phase liquid (NAPL)), tetrachloroethylene (dense NAPL), phenol (soluble in water), and pentachlorophenol (white crystalline solid) in a hypothetical subsurface leak situation using a multiphase compositional transport model. One metric ton of chemical substances was assumed to leak at a point 3.51 m above the water table in a homogeneous unconfined aquifer which had the depth to water table of 7.135 m, the hydraulic gradient of 0.00097, the recharge rate of 0.7 mm/day, and the permeability of 2.92?×?10?10 m2. For comparison, surface spill scenarios, which had a long pathway from source to the water table, were simulated. Using the model results, point-source pollutant loadings to soil and groundwater were calculated by multiplying mass, impact area, and duration above and below the water table respectively. Their sensitivity to subsurface properties (depth to water table, recharge rate, porosity, organic carbon content, decay rate, hydraulic gradient, capillary pressure, relative permeability, permeability) was analyzed, with changing each parameter within acceptable ranges. The study result showed that the pollutant loading to groundwater was more sensitive to the subsurface properties than the pollutant loading to soil. Decay rate, groundwater depth, hydraulic gradient and porosity were influential to pollutant loadings. The impact of influential parameters on pollutant loadings was nonlinear. The dominant subsurface properties of pollution loadings (e.g., decay rate, groundwater depth, hydraulic gradient, and porosity for groundwater) also affect the vulnerability, and the subsurface pollutant loadings defined in this study are dependent on chemical properties as well, which indicates that the influential hydrogeological and physicochemical parameters to pollutant loadings can be used for pollution potential assessment. The contribution of this work is the suggestion that the sensitivity of pollutant loadings can be used for pollution potential assessment. Soil and groundwater pollution potential of chemicals are discussed altogether for leak scenarios. A physics-based model is used to understand the impact of subsurface properties on the fate and transport of chemicals above and below the water table, and consequently their impact on the pollutant loading to soil and groundwater.

  相似文献   

16.
ABSTRACT

The present work was designed to determine the potential genotoxicity at the vicinity of a solid waste incinerator in the metropolitan area of Sâo Paulo, using the Tradescantia stamen-hair bioassay. Experiments were carried out between December 1998 and April 1999 in four regions (40 pots of plants per site) selected on the basis of their pollution levels predicted by theoretical modeling of the dispersion of the incinerator's plume. The exposure sites were defined as follows: highest level (incinerator); a high level (museum) located 1.5 km from the emission point; a moderate level (school, at a distance of 3.5 km from the incinerator); and a control (at Jaguariuna countryside). The difference in genotoxicity among the groups was statistically significant (p < 0.001). The frequency of mutations observed in the countryside was significantly lower [2.25 ± 1.55, mean ± SD (standard deviation)] than that of the sites close to the incinerator. The frequency of mutations measured at the school (3.70 ± 1.36) was significantly lower than that measured at both the museum (4.89 ± 1.12) and the incinerator (5.69 ± 1.34). In conclusion, we found a positive correlation between the spatial distribution of the emissions of the incinerator located in an urban area and the mutagenic events measured by the Tradescantia stamen-hair assay. The in situ approach employed in this study was simple, efficient, and of low cost. No air or chemical extraction of pollutants was necessary for genotoxicity testing as required by other assays.  相似文献   

17.
Air pollution caused by ship exhaust emission is receiving more and more attention. The physical and chemical properties of fuels, such as sulfur content and PAHs content, potentially had a significant influence on air pollutant emissions from inland vessels. In order to investigate the effects of fuel qualities on atmospheric pollutant emissions systematically, a series of experiments was conducted based on the method of actual ship testing. As a result, SO2, PM and NOx emission rates all increased with the increase of main engine rotating speed under cruise mode, while PM and NOx emission factors were inversely proportional to the main engine rotating speed. Moreover, SO2 emission factor changed little with the increase of the main engine rotating speed. In summary, the fuel-dependent specific emission of SO2 was a direct reflection of the sulfur content in fuel. The PM emission increased with the increase of sulfur content and PAHs content in fuel. However, fuel qualities impacted little on NOx emissions from inland vessels because of NOx formation mechanisms and conditions.

Implications: Ship activity is considered to be the third largest source of air pollution in China. In particular, air pollutants emitted from ships in river ports and waterways have a direct impact on regional air quality and pose threat on the health of local residents owing to high pollutants concentration and poor air diffusion. The study on the relationship between air pollutant emissions and fuel quality of inland vessels can provide foundational data for local authority to formulate reasonable and appropriate policies for reducing atmospheric pollution due to inland vessels.  相似文献   


18.
Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter ≤2.5 μm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore's contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.

Implications Singapore is widely recognized for its environmental achievements and often cited as a model of a high-density, livable, and sustainable city. This article reviews available information with the aim to provide a reference for future scientific research of strategic relevance for Singapore's air quality and greenhouse gas mitigation management under a multipollutant framework. However, the limited publicly accessible data and little scientific information prevent a comprehensive assessment of the local air quality and greenhouse gas emissions. Singapore's dynamic economy and strong profile in advanced science and technological innovation have the potential to enhance the research agenda in this area, which is not yet well developed in tropical cities.  相似文献   

19.
The contribution of the emission of PCBs by a municipal waste incinerator in Wilrijk, a relatively industrialized district in the largest city of Flanders, to the total emission to air and to the total human intake was estimated. Therefore it was compared to the emission of PCBs by evaporation from PCB containing applications (transformers, capacitors, paint, ink, etc.) and to the intake of PCBs with food. As there was a lack of PCB data from the incinerator, the PCB emission concentration was estimated using three different approaches. A PCB measurement of the incinerator emission, performed later on, fell within the predicted range of 0.0004-0.005 ng TEQ/Nm3. Emission of PCBs from PCB containing applications and intake from food were deduced from information available on Flemish and European level. The results indicate a PCB contribution from the incinerator to local emissions between 0.3% and 3% of the emission from PCB containing applications and a contribution to human intake less than 6 x 10(-4)% of the intake from food.  相似文献   

20.
Abstract

Data from the U.S. Environmental Protection Agency Air Quality System, the Southeastern Aerosol Research and Characterization database, and the Assessment of Spatial Aerosol Composition in Atlanta database for 1999 through 2002 have been used to characterize error associated with instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, GA. These data are being used in time series epidemiologic studies in which associations of acute respiratory and cardiovascular health outcomes and daily ambient air pollutant levels are assessed. Modified semivariograms are used to quantify the effects of instrument precision and spatial variability on the assessment of daily metrics of ambient gaseous pollutants (SO2, CO, NOx, and O3) and fine particulate matter ([PM2.5] PM2.5 mass, sulfate, nitrate, ammonium, elemental carbon [EC], and organic carbon [OC]). Variation because of instrument imprecision represented 7–40% of the temporal variation in the daily pollutant measures and was largest for the PM2.5 EC and OC. Spatial variability was greatest for primary pollutants (SO2, CO, NOx, and EC). Population–weighted variation in daily ambient air pollutant levels because of both instrument imprecision and spatial variability ranged from 20% of the temporal variation for O3 to 70% of the temporal variation for SO2 and EC. Wind rose plots, corrected for diurnal and seasonal pattern effects, are used to demonstrate the impacts of local sources on monitoring station data. The results presented are being used to quantify the impacts of instrument precision and spatial variability on the assessment of health effects of ambient air pollution in Atlanta and are relevant to the interpretation of results from time series health studies that use data from fixed monitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号