首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrocarbon emissions from gas turbine engines can be divided into unreactive and reactive components. The unreactive component consists of paraffins which do not take part in smog producing reactions with NOx. The reactive portion includes olefins, aro-matics and oxygenated derivatives of hydrocarbons which take part in smog producing reactions with NOx. Odor is attributed normally to the aromatics and oxygenates.

Previous work led to the development of a high temperature subtractive analyzer (APCA 22, 696 (1972) which separates hydrocarbon emissions into a) paraffins and b) aromatics, olefins, and oxygenates. Liquid chromatographic techniques have also been used to separate the hydrocarbons into a) aliphatics, b) aromatics, and c) oxygenates. These aliphatics include olefins.

In this work, engine emissions have been analyzed by these two techniques as a function of engine type, engine thrust (power) and fuel type. Specific engines tested were JT4, JT3D and JT9D. Fuels studied were JP5, and Jet A fuel. Power settings ranged from sub idle to high power. Results using the high temperature subtractive analyzer indicate that the % unreactive hydrocarbons ranges from 30 % at idle to near zero at high power for these engine types and fuels. In general, the higher the total hydrocarbon level, the higher the % unreactive hydrocarbons. Total hydrocarbons decrease sharply with increase in thrust. The emissions from different types of engines at various power settings were collected on an adsorbent Chromosorb 102 and the adsorbate analyzed by liquid chromatographic techniques at A. D. Little, Inc. These results showed similar trends from low power to high power. The oxygenate fraction increased and aliphatic portion decreased. However, the data for this portion of the work were very limited and no firm conclusions can be drawn.  相似文献   

2.
Effects associated with photochemical air pollution were measured during irradiation of n-butane-nitrogen oxide or n-butane-ethane-nitrogen oxide mixtures, with small amounts of propylene or toluene added. The effects measured including nitrogen dioxide and oxidant dosages, yields of formaldehyde and peroxy-acetyl nitrate, and eye irritation response. The results obtained clearly show that beneficial effects result from selective changes in hydrocarbon composition as well as from reduction of total hydrocarbon concenfration. Exclusion of olefins and alkylbenzenes was highly effective in reducing oxidant dosage, formaldehyde and peroxyacetyl nitrate concentrations, and eye irritation response. The only penalty was a modest increase in nitrogen dioxide dosage. A large reduction in nitrogen oxide concentration reduced nitrogen dioxide dosage and eye irritation response, but with the penalty of a large increase in oxidant dosage. The desirability of preferentially reducing olefins and alkylbenzenes rather than paraffinic hydrocarbons, acetylene, and benzene is strongly supported by this study. Research and development efforts should be directed toward preferential hydrocarbon control by mechanical or catalytic control  相似文献   

3.
Anaerobic lagoons are a major source of odor at concentrated animal feeding operations. Seven different kinds of artificial (geotextile and polyethylene foam) and natural (straw and redwood) permeable lagoon covers were evaluated for their potential to reduce odorous emissions generated by anaerobic waste lagoons. A novel floating sampling raft was constructed and used to simultaneously evaluate the effectiveness of lagoon covers on an operating swine waste lagoon. The air collected from the raft was evaluated for odor, total reduced sulfur (TRS) compounds, ammonia, total hydrocarbons, dimethyldisulfide, and trimethylamine. The emission rates from the lagoon were highly variable both temporally and spatially. All of the lagoon covers substantially reduced TRS emissions and odor. Geotextile fabric and a recycled foam cover exhibited the greatest reduction in total hydrocarbon emissions; natural covers were less effective. Because of consistently low emission rates of ammonia, no statistically significant reduction of ammonia emissions were observed from any of the lagoon covers.  相似文献   

4.
A high ozone event in the Houston–Galveston–Brazoria area was utilized to study the shortcomings of the current air quality models. To improve the baseline simulations with the Comprehensive Air quality Model with Extensions (CAMx) for developing the state implementation plan, the Texas Commission on Environmental Quality (TCEQ) imputed emissions of highly reactive volatile organic compounds (HRVOCs) by scaling the amount of fugitive emissions of olefins to co-emitted NOx from selected point sources, effectively multiplying by 3–12 times over the regular inventory values. In this paper, CAMx and the Community Multiscale Air Quality (CMAQ) model were used to determine if the imputed HRVOC emissions were consistent with the observed atmospheric conditions. With the base emissions, CMAQ and CAMx both with the Carbon-Bond 4 (CB-4) mechanism simulated similar ozone concentrations. But with the imputed HRVOC emissions, CMAQ predicted lower ozone peaks than CAMx in the vicinity and downwind of the Ship Channel and other highly HRVOC-rich areas. Based on analyses of sensitivity simulations of CMAQ with different emission inputs and vertical diffusion algorithms in the model, we found that the modeled atmosphere lacked reactivity to produce the observed high ozone event. Although the imputed HRVOC emissions improved ozone prediction at the surface sites, but the ethylene concentrations were not consistent with the measurements at the super sites (La Porte and Clinton) and by NOAA aircraft. Several sensitivity tests designed to provide additional radicals into the system and other research results suggested that the lack of reactivity may need to be corrected by targeted, and probably of episodic, increase of HRVOC emissions, from the sources in the Houston Ship Channel. Additional investigation of the ozone production efficiency for different chemical mechanisms is necessary to pinpoint the emissions uncertainty issues.  相似文献   

5.
Abstract

Anaerobic lagoons are a major source of odor at concentrated animal feeding operations. Seven different kinds of artificial (geotextile and polyethylene foam) and natural (straw and redwood) permeable lagoon covers were evaluated for their potential to reduce odorous emissions generated by anaerobic waste lagoons. A novel floating sampling raft was constructed and used to simultaneously evaluate the effectiveness of lagoon covers on an operating swine waste lagoon. The air collected from the raft was evaluated for odor, total reduced sulfur (TRS) compounds, ammonia, total hydrocarbons, dimethyldisulfide, and trimethylamine. The emission rates from the lagoon were highly variable both temporally and spatially. All of the lagoon covers substantially reduced TRS emissions and odor. Geotextile fabric and a recycled foam cover exhibited the greatest reduction in total hydrocarbon emissions; natural covers were less effective. Because of consistently low emission rates of ammonia, no statistically significant reduction of ammonia emissions were observed from any of the lagoon covers.  相似文献   

6.
The present study presents the first detailed inventory for non-methane hydrocarbon emissions from vegetation over Greece. The emission inventory, based on a Geographic Information System (GIS), has a spatial resolution of 5×5 km2 and a time resolution of 1 h. For the area under study, the calculated yearly monoterpene emissions are higher than the corresponding isoprene ones. In addition to the methodology presented here, the CORINAIR methodology was also applied for the calculation of emission rates. This resulted in orders of magnitude differences in the calculated emission rates. The CORINAIR methodology is judged to lead to unrealistically high values of biogenic NMHC emission rates. The temperature dependence of the CORINAIR correction factors seems to affect most the emissions, together with grazing land emission factors.  相似文献   

7.
Speciated hydrocarbon emissions data have been collected for six single-component fuels run in a laboratory pulse flame combustor (PFC). The six fuels include n-heptane, isooctane (2, 2, 4-trimethylpentane), cyclohexane, 1-hexene, toluene, and methyl-t-butyl ether (MTBE: an oxygenated fuel extender). Combustion of non-aromatic fuels in the PFC (at a fuel/air equivalence ratio of Φ = 1.02) produced low levels of unburned fuel and high yields of methane and olefins (> 75 percent combined) irrespective of the molecular structure of the fuel. In contrast, hydrocarbon emissions from toluene combustion in the PFC were comprised predominantly of unburned fuel (72 percent). With the PFC, low levels of 1, 3-butadiene (0.3-1.8 percent) were observed from all the fuels except MTBE, for which no measurable level (<0.2 percent) was detected; low levels of benzene were observed from isooctane, heptane, and 1-hexene, but significant levels (9 percent) from cyclohexane and toluene. No measurable amount of benzene (< 0.2 percent) was observed in the MTBE exhaust.

For isooctane and toluene the speciated hydrocarbon emissions from a spark-ignited (SI) single-cylinder engine were also determined. HC emissions from the SI engine contained the same species as observed from the PFC, although the relative composition was different. For the non-aromatic fuel isooctane, unburned fuel represented a larger fraction (50 percent) of the HC emissions when run in the engine. HC emissions from toluene combustion in the engine were similar to those from the PFC.  相似文献   

8.
An Aerosol Trajectory Model (ATM) is applied to the South Coast Air Basin of California for a two-day episode in August 1982 to evaluate proposed control strategies that aim to reduce atmospheric aerosols. Model predictions Indicate that secondary organic aerosols decrease linearly with reactive hydrocarbon emissions. In addition, the model shows that If sulf ate is produced only in the gas phase by oxidation of SO2, then reduction In SO2 emissions yields a nearly proportional decrease In sulfate levels. Reduction in ammonia emissions, combined with reduction of NOx emissions, gives the best results In terms of nitrate control. The order in which the emission controls are implemented Is predicted to have a major impact on the reduction of secondary atmospheric aerosols.  相似文献   

9.
The purpose of this paper is to describe ozone production in forest slash burn plumes. Plumes from controlled fires in the state of Washington were monitored using an instrumented aircraft. Ozone, oxides of nitrogen, condensation nuclei, and visual range (nephelometer) were measured continuously on board the plane. Airborne grab samples were collected for detailed hydrocarbon analysis.

The slash burn plumes were found to contain significant quantities of ozone. A buildup of 40–50 ppb above the ambient background ozone concentrations was not unusual. Hydrocarbon analyses revealed the presence of many photochemically reactive olefins in the plume. Hydrocarbon/NO x ratios were favorable for photochemical oxidant production.  相似文献   

10.
Abstract

In an earlier paper the ozone-forming potential of n-propyl bromide (NPB) was studied with a new methodology designed to address issues associated with a marginal smog-forming compound. However, the U.S. Environmental Protection Agency (EPA) subsequently revised its policy and now recommends using the Maximum Incremental Reactivity (MIR) scale to rank the ozone-forming potential of all volatile organic compounds (VOCs), including those of marginal ozone productivity. Nevertheless, EPA contemplated exceptions to the box-model-derived MIR scale by allowing use of photochemical grid-model simulations for case specific reactivity assessments. The California Air Resources Board (CARB) also uses the MIR scale and CARB has a Reactivity Scientific Advisory Committee that can consider exceptions to the MIR scale. In this study, grid-model simulations that were recommended by EPA are used to evaluate the incremental ozone impacts of NPB using an update to the chemical mechanism developed in an earlier paper. New methods of analysis of the grid-model output are further developed here to quantify the relative reactivities between NPB and ethane over a wide range of conditions. The new grid-model-based analyses show that NPB is significantly different and generally less in ozone-forming potential (i.e., reactivity) than predicted by the box-model-based MIR scale relative to ethane, EPA’s “bright-line” test for non-VOC status. Although NPB has low reactivity compared to typical VOCs on any scale, the new grid-model analyses developed here show that NPB is far less reactive (and even has negative reactivity) compared to the reactivity predicted by the MIR scale.  相似文献   

11.
In an earlier paper the ozone-forming potential of n-propyl bromide (NPB) was studied with a new methodology designed to address issues associated with a marginal smog-forming compound. However, the U.S. Environmental Protection Agency (EPA) subsequently revised its policy and now recommends using the Maximum Incremental Reactivity (MIR) scale to rank the ozone-forming potential of all volatile organic compounds (VOCs), including those of marginal ozone productivity. Nevertheless, EPA contemplated exceptions to the box-model-derived MIR scale by allowing use of photochemical grid-model simulations for case specific reactivity assessments. The California Air Resources Board (CARB) also uses the MIR scale and CARB has a Reactivity Scientific Advisory Committee that can consider exceptions to the MIR scale. In this study, grid-model simulations that were recommended by EPA are used to evaluate the incremental ozone impacts of NPB using an update to the chemical mechanism developed in an earlier paper. New methods of analysis of the grid-model output are further developed here to quantify the relative reactivities between NPB and ethane over a wide range of conditions. The new grid-model-based analyses show that NPB is significantly different and generally less in ozone-forming potential (i.e., reactivity) than predicted by the box-model-based MIR scale relative to ethane, EPA's "bright-line" test for non-VOC status. Although NPB has low reactivity compared to typical VOCs on any scale, the new grid-model analyses developed here show that NPB is far less reactive (and even has negative reactivity) compared to the reactivity predicted by the MIR scale.  相似文献   

12.
Mathematical modeling of ambient air photochemistry requires comprehensive mobile source hydrocarbon emission speciation. Passenger car tailpipe and evaporative hydrocarbon emissions have been examined using procedures described in the Federal Register for emissions certification. Hydrocarbon emission rates and compositions were determined for four passenger cars: a 1963 Chevrolet, a 1977 Ford Mustang II, a 1978 Mercury Monarch, and a 1979 Ford LTD-II. These vehicles are representative of a wide range of exhaust and evaporative emissions control configurations. Both emission rates and compositions were dependent on the emissions control devices used with the vehicles, and the fuel composition and vapor pressure. In agreement with the literature, tailpipe catalyst control systems removed unsaturated olefinic, aromatic, and acetylenic hydrocarbons to a greater extent than saturated paraffinic hydrocarbons. The impact of evaporative control devices on composition was not well defined, however the limited data suggested a sensitivity to fuel aromatic content. The emission rate of benzene, emphasized because of its potential carcinogenicity, was sensitive to both fuel benzene and total aromatic content.  相似文献   

13.
Photooxidation of lower-reactivity paraffinic hydrocarbons with nitrogen oxide was investigated. Maximum oxidant yield occurred at much lower ratios of hydrocarbon to nitrogen oxide than in more reactive systems such as propylene-nitrogen oxide mixtures. Appreciable oxidant yields were obtained even from irradiation of propane-nitrogen oxide mixtures at low ratios of nitrogen oxide to propane. These results, and nitrogen dioxide and oxidant dosages computed from these measurements, substantiate the importance of reactivity characteristics in formulation of decisions on control of hydrocarbons and nitrogen oxides.  相似文献   

14.
Exhaust and evaporative emissions were examined from vehicles fueled with methanol or a gasoline-methanol blend. Regulated automobile pollutants, as well as detailed hydrocarbons, methanol, and aldehydes were measured, and exhaust emission trends were obtained for vehicle operation over five different driving cycles. Results indicated that use of the blended fuel does not generally have any significant effect on base-line exhaust emission rates of regulated pollutants; however, emission rates of aldehydes increased during the Federal Test Procedure. Aldehyde emissions from the methanol-fueled car were roughly an order of magnitude higher than those resulting from blended fuel usage. The hydrocarbon composition of evaporative emissions with the blended fuel was similar to that with the base-line fuel except when canister breakthrough occurred. Evaporative emissions during breakthrough were comprised chiefly of N-butane.  相似文献   

15.
Diesel engine emissions are composed of a long list of organic compounds, ranging from C2 to C12+, and coming from the hydrocarbons partially oxidized in combustion or produced by pyrolisis. Many of these are considered as ozone precursors in the atmosphere, since they can interact with nitrogen oxides to produce ozone under atmospheric conditions in the presence of sunlight. In addition to problematic ozone production, Brookes, P., and Duncan, M. [1971. Carcinogenic hydrocarbons and human cells in culture. Nature.] and Heywood, J. [1988. Internal Combustion Engine Fundamentals.Mc Graw-Hill, ISBN 0-07-1000499-8.] determined that the polycyclic aromatic hydrocarbons present in exhaust gases are dangerous to human health, being highly carcinogenic.The aim of this study was to identify by means of gas chromatography the amount of each hydrocarbon species present in the exhaust gases of diesel engines operating with different biodiesel blends. The levels of reactive and non-reactive hydrocarbons present in diesel engine exhaust gases powered by different biodiesel fuel blends were also analyzed.Detailed speciation revealed a drastic change in the nature and quantity of semi-volatile compounds when biodiesel fuels are employed, the most affected being the aromatic compounds. Both aromatic and oxygenated aromatic compounds were found in biodiesel exhaust. Finally, the conservation of species for off-side analysis and the possible influence of engine operating conditions on the chemical characterization of the semi-volatile compound phase are discussed.The use of oxygenated fuel blends shows a reduction in the Engine-Out emissions of total hydrocarbons. But the potential of the hydrocarbon emissions is more dependent on the compositions of these hydrocarbons in the Engine-Out, to the quantity; a large percent of hydrocarbons existing in the exhaust, when biodiesel blends are used, are partially burned hydrocarbons, and are interesting as they have the maximum reactivity, but with the use of pure biodiesel and diesel, the most hydrocarbons are from unburned fuel and they have a less reactivity. The best composition in the fuel, for the control of the hydrocarbon emissions reactivity, needs to be a fuel with high-saturated fatty acid content.  相似文献   

16.
Aerosols attributable to automobile exhaust can be classified as two types—primary aerosol (initially present in the exhaust) and secondary aerosol (generated photochemically from hydrocarbons and nitrogen oxides in the exhaust). In this study, investigation was made of possible effects of motor-fuel composition on the formation of these aerosols. Secondary aerosol, of principal interest in this work, was produced by irradiating auto exhaust in Battelle-Columbus’ 610 ft3 environmental chamber. A limited number of determinations of primary aerosol in diluted auto exhaust was made at the exit of a 36 ft dilution runnel. Determination of both primary and secondary aerosol was based on light-scattering measurements.

Exhaust was generated with seven full-boiling motor gasolines, both leaded and nonleaded, in a 1967 Chevrolet which was not equipped with exhaust-emission control devices. Changes in fuel composition produced a maximum factor of three difference in light scattering due to primary aerosol. Aerosol yields, for consecutive driving cycles on the same fuel, vary considerably; as a result, ranking the fuels on the basis of average primary aerosol yield was not very meaningful. In addition to fuel composition, the more important independent variables are initial SO2 concentration, relative humidity and initial hydrocarbon concentration. Statistical analysis of the data indicates that the seven test fuels can be divided into two arbitrary groups with regard to secondary aerosol-forming potential. The fuels in the lower light-scattering group had aromatic contents of 15 and 21%, while those in the higher light-scattering group had aromatic contents of 25, 48, and 55%. Although the fuels can be grouped on the basis of a compositional factor, the grouping of fuels with aromatic content ranging from 25 to 55% indicates that this compositional factor cannot be equated simply with aromatic content. In an associated study of the aerosol-forming potential of individual hydrocarbons prominent in auto exhaust, it was observed that aromatics produce substantially more photochemical aerosol than olefins and paraffins. However, experiments with binar/hydrocarbon mixtures containing aromatjcs, as well as in these exhaust experiments, a strong dependence of aerosol yield on the aromatic components is is not observed. Thus, the data indicate that the dependence of secondary aerosol formation on fuel factors is a complex one and cannot be predicted solely on the basis of a sirigle hydrocarbon component reactivity scale.

The two types of automobile aerosol did not have the same dependence on fuel, composition. The variation in total light scattering attributable to primary plus secondary aerosol was less than that due to either component alone. It therefore was concluded that the light scattering due to automobile exhaust emissions in these experiments was not significantly affected by changing fuel composition.  相似文献   

17.
ABSTRACT

This article describes an effort to re-examine the scientific bases of the existing, more than two decades-old U.S. Environmental Protection Agency (EPA) policy on volatile organic compound reactivity in light of recent scientific knowledge and understanding. The existing policy allows “negligibly reactive” organic emissions, that is, emissions with ambient ozone production potential lower than that of ethane, to be exempted from all ozone regulations. It relies on use of kOH and incremental reactivity data for determining whether an organic compound is negligibly reactive. Recent scientific evidence suggests that (1) exempting the negligibly reactive organic emissions from all regulations is unjustifiable, (2) the choice of ethane as the benchmark organic species for distinguishing reactive from negligibly reactive organics may be inappropriate, (3) the assumptions and methods used for classifying organic compounds as “reactive” and “negligibly reactive” should be reconsidered, and (4) the volatility factor should be considered, more appropriately, in much the same way as the reactivity factor.  相似文献   

18.
Six single-component fuels (isooctane, n-heptane, 1-hexene, cyclohexane, methyl-t-butyl ether (MTBE), and toluene) and a multicomponent tracer fuel were burned in a pulse flame combustor (PFC) and reacted over a three-way automotive catalyst. The composition of the raw, uncatalyzed PFC exhaust was characterized in Part I of this study. In Part II, we focus on the conversions of the individual exhaust HC species over the catalyst. In accord with previous studies, the order of reactivity observed for the various classes of HC species was: methane (least reactive) < saturated HC < aromatics < unsaturated HC (most reactive). These differences in catalytic reactivity led to increases in the relative concentrations of methane and some saturated hydrocarbons in the post catalyst exhaust, and corresponding decreases in the relative concentrations of aromatic and unsaturated hydrocarbons. Oxygenated organic compounds showed wide variability in catalytic reactivity depending on the specific compounds involved. Catalytic conversion of the air toxic, 1,3-butadiene, was essentially complete to within detection limits. Benzene and toluene appeared to have similar intrinsic catalytic reactivities. However, net conversion of benzene in most instances was significantly less than that of toluene owing to demethylation of toluene (to form benzene) occurring in parallel with benzene oxidation. Rich combustion of both isooctane and tracer fuel led to the production of methane by the catalyst, primarily from reactions of acetylene and small olefins.  相似文献   

19.
The Los Angeles County Air Pollution Control District has enacted a solvent law termed Rule 66. It places limitations on both solvent emissions and formulations used within its jurisdiction. Two types of analytical procedures were developed in conjunction with the rule. For emissions, a total combustion method is used whereby organic source vapors are catalytically converted to CO2 and reported in terms of carbon content. For liquid formulations, a column chromatographic screening analysis is first performed to measure categories of compounds: oxygenates, aromatics, olefins, and paraffins. This helps to select the starting conditions for the lengthier GC procedure which provides the ultimate analysis of individual compounds.  相似文献   

20.
Lu M  Mulholland JA 《Chemosphere》2004,55(4):605-610
In this study, the addition of cyclopentadienyl (CPDyl) moieties to aromatic rings has been investigated experimenNaphthalene was selected as the representative aromatic compound and its pyrolytic reactivity was studied first to obtain background information for the pyrolysis of cyclopentadiene-indene-naphthalene mixture. The experiments were conducted in a 5 s laminar flow reactor over the temperature range of 700-850 degrees C with 50 degrees C increments. PAH growth from naphthalene pyrolysis is mainly attributed to aryl-aryl addition of naphthyl radicals and naphthalene fragmentation, with lower product formation rates comparing with hydrocarbons with CPDyl moieties. The results indicate that naphthalene is less reactive than the CPDyl containing hydrocarbon radical-molecule addition of CPDyl radicals to naphthalene results in phenanthrene, which can also be formed substantially from other growth pathways. This addition occurs mainly at low temperatures and is less favored due to the competition from more reactive indenyl and CPDyl radicals. CPDyl radical addition to naphthalene exhibits limited aromatic growth due to the aromaticity restrictions of naphthalene. The studies of hydrocarbons with and without CPDyl moieties suggest that the reaction pathways of CPDyl bearing hydrocarbons are different from those without these moieties and cannot be adequately accounted for by the existing acetylene addition and aryl-aryl addition mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号