首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The body of information presented in this paper is directed to plant scientists who are concerned with factors which modify the susceptibility of plants to air pollutants.

Tobacco and tomato plants grown in sand-solution culture with varying levels of nitrogen or sulfur were exposed to injurious levels of sulfur dioxide. Plants of both species which were deficient in either nutrient exhibited decreased susceptibility to the gas compared with plants grown at optimal levels of each nutrient. Foliage of these plants was also found to have increased stomatal resistance as measured by a porometer and decreased total sulfur accumulations. Plants grown at optimum levels of each nutrient showed increased susceptibility over that of the deficient plants. Stomatal resistance was lower and sulfur accumulation was greater than in the deficient plants. At the supra-optimal nitrogen and sulfur levels, there were differences in susceptibility. Over-abundant nitrogen appeared to decrease susceptibility whereas over-supplies of sulfur increased it.

The response of plants with deficient or optimal supplies of either nutrient might be explained by the effects of nutrition on stomatal activity and hence on ability to absorb SO2S from the atmosphere, mineral deficiency being known to increase stomatal resistance, and mineral sufficiency, to decrease stomatal resistance by virtue of increased efficiency of water use. The difference in response between plants overfertilized with respect to nitrogen or sulfur is explained by the fact that sulfur is both nutrient and phytotoxicant at the same time. Having already been oyersupplied with sulfur by absorption from the nutrient substrate, the high-sulfur plants were unable to withstand additional sulfur accumulation from the atmosphere and hence were more severely injured.

Increased carbohydrate accumulation in the nitrogen- and sulfur-deficient plants might play an additional role in protection from SO2-injury.  相似文献   

2.
EDU or ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea) has been used in experiments to assess ozone effects on vegetation under field conditions because it provides protection against oxidative damage. Tests have mainly been conducted on crop plants, but for woody species only few reports have provided evidence that it can be used in long-term experiments. In this study we tested the technique of stem injection of EDU to study the effects of ozone exposure on Populus nigra cv. Wolterson over one growing season. Cuttings of Populus nigra were grown in pots in the field and between mid-July and early September plants were repeatedly injected with EDU solution (5 mg/plant) or with water at 14-day intervals. Significant differences were found between EDU- and water-injected plants: water-treated plants had more foliar injury, more chlorotic leaves, and shedding of leaves started earlier, suggesting EDU was effective in preventing visible ozone injury and acceleration of senescence. Photosynthetic rates, measured for one leaf age, showed no differences but were mostly higher for the EDU-treated plants. At the end of the growing season diameter increment was 16% higher and there was a non-significant trend for above-ground biomass to be increased by 9% for the EDU-treated plants. This experiment has provided evidence that for this clone serious ozone damage occurs at relatively low concentrations and that EDU can provide protection against visible injury, as well as against longer term growth reductions.  相似文献   

3.
A single 12 h ozone exposure peaking at 0.20 ppm proved phytotoxic to greenhouse-grown 'Cutler 71' soybeans at each growth stage tested from V5 to R6. Visible injury occurred within 40 h on the unifoliodate leaves and middle-aged and older trifoliolates while the younger leaves were free from toxicity symptoms. In some instances visible injury was accompanied by a decrease in chlorophyll and an increase in leaf diffusive resistance. Although nitrogen fixation was not significantly altered except at early pod formation (R3), and nitrate reductase activity was significantly reduced only if the ozone exposure occurred at the time of maximal enzyme activity (V5), nitrogen content of the leaves was reduced by ozone treatment. Shoot dry weight was not affected 40 h after ozone treatment, but root dry weight was significantly reduced. Plants grown with supplemental NO(3)(-) were more sensitive to ozone than those dependent on fixed nitrogen. At plant maturity, there was no evidence of an ozone effect on shoot, root, or seed dry weight, NO(3)(-) -grown plants showed a significant increase in growth and yield over N(2)(-) plants; but no ozone effect was observed, despite the increased foliar sensitivity. Multiple ozone exposures at growth stages V3, R1 and R3 exacerbated the effects noted with a single episode and also reduced nitrogenase activity (reflected in specific and total nodule activity) and shoot and root dry weight. At plant maturity, there was again no evidence of a significant effect of multiple ozone treatment on shoot dry weight or seed yield although root weight remained low. The results would tend to support the hypothesis that older leaves of soybean do not make a significant contribution to seed yield. Although they may be injured by ozone during the reproductive phases of growth, seed yield may not be affected if the younger O(3)-tolerant leaves remain functional.  相似文献   

4.
Methane emissions from wastewater management   总被引:2,自引:0,他引:2  
Gas exchange and ozone-induced foliar injury were intensively measured during a 6-day period in mid-August 1998 on leaves of Acer pseudoplatanus, Betula pendula, Corylus avellana, Fagus sylvatica, Fraxinus excelsior, Morus nigra, Prunus avium, Prunus serotina, Rhamnus cathartica, and Viburnum lantana at a forest nursery site in Canton Ticino, Switzerland. Plants were grown in four open plots (AA), four open-top chambers receiving carbon-filtered (CF) air, and four receiving non-filtered (NF) air. Significant variation in gas exchange (F > 12.7, P < 0.001) was detected among species with average net photosynthesis and average stomatal conductance differing by a factor of two. Species also varied significantly in foliar injury for those leaves for which we measured gas exchange (F = 39.6, P < 0.001). Fraxinus excelsior, M. nigra, P. avium, P. serotina, R. cathartica, and V. lantana showed more injury than A. pseudoplatanus, B. pendula, C. avellana, and Fagus sylvatica. Plants grown in CF chambers had significantly higher net photosynthesis (A) and stomatal conductance to water vapor (gwv), and lower foliar injury than plants grown in NF chambers and AA plots; interactions between species and ozone treatments were significant for all variables (F > or = 2.2, P < 0.05) except gwv (F = 0.7, P > 0.1). Although A and gwv decreased and foliar injury increased with leaf age, the magnitude of these changes was lower for plants grown in CF chambers than for plants grown in NF chambers and AA plots. Neither ozone uptake threshold (r = 0.26, P > 0.20) nor whole-plant injury (r = -0.15, P > 0.41) was significantly correlated with stomatal conductance across these species. It appears that the relationships between stomatal conductance and foliar injury are species-specific and interactions between physiology and environments and leaf biochemical processes must be considered in determining species sensitivity to ambient ozone exposures.  相似文献   

5.
The relationship between ozone and the northern root-knot nematode on tobacco was investigated. Seedlings of tobacco (Nicotiana tabacum L.) cv. Virginia 115 were inoculated and not inoculated with root-knot (Meloidogyne hapla (Chitwood) prior to transplanting to a field plot. One-half the plants were sprayed at weekly intervals with an antioxidant, EDU at the rate of 1 kg ha−1 to protect against oxidant injury. O3 concentrations in excess of 80 ppb were recorded 14 times during the summer of 1982. Ambient ozone inhibited growth and yield of tobacco inoculated and not inoculated with M. hapla. Tobacco inoculated with nematode alone developed significantly more ozone injury than other treatments indicating that tobacco infected with M. hapla is more susceptible to ambient O3. Significantly 20% more galls developed on plants with nematode inoculation compared to plants with nematode inoculation + EDU indicating that EDU indirectly reduced gall development in tobacco. Plants protected with EDU also showed an increase in dry weight of shoot, root and biomass.  相似文献   

6.
The impacts of ambient ozone pollution on crops in the Mediterranean countries have been recorded regularly in the so-called “grey literature” of UN/ECE Workshop Reports for the Convention on Long-range Transboundary Air Pollution, and less frequently in the peer-reviewed literature. This short communication reviews such records and shows that ambient ozone episodes have been reported to cause visible injury on 24 agricultural and horticultural crops grown in commercial fields including three of the most important crops in the region (wheat, maize, and grapevine). On one occasion, the damage was so extensive that complete crop loss occurred in commercial glasshouses of Butterhead lettuce in one area of Greece. Experiments with open-top chambers have indicated that ambient ozone caused 17–39% yield loss in crops such as wheat, bean, watermelon and tomato. The applicability of the long-term critical level of ozone described by Fuhrer et al. (Environ. Pollut. 97 (1997) 91) for the Mediterranean areas is also considered.  相似文献   

7.
Treatments with ethylenediurea (EDU) protect plants from ozone foliar injury, but the processes underlying this protection are poorly understood. Adult ash trees (Fraxinus excelsior), with or without foliar ozone symptoms in previous years, were treated with EDU at 450ppm by gravitational trunk infusion in May-September 2005 (32.5ppmh AOT40). At 30-day intervals, shoot growth, gas exchange, chlorophyll a fluorescence, and water potential were determined. In September, several biochemical parameters were measured. The protective influence of EDU was supported by enhancement in the number of leaflets. EDU did not contribute its nitrogen to leaf tissue as a fertiliser, as determined from lack of difference in foliar N between treatments. Both biochemical (increase in ascorbate-peroxidase and ascorbic acid, and decrease in apoplastic hydrogen peroxide) and biophysical (decrease in stomatal conductance) processes regulated EDU action. As total ascorbic acid increased only in the asymptomatic trees, its role in alleviating O(3) effects on leaf growth and visible injury is controversial.  相似文献   

8.
Ozone is a widely distributed phytotoxic air pollutant and is known to reduce the yield of several important agricultural crops in Spain. However, benomyl has been found to lessen the adverse impact of ozone on plants. We studied the effects of ozone and benomyl on chlorophyll a fluorescence, antioxidant enzymes, and lipid peroxidation in tomato (Lycopersicon esculentum Mill. cv. Tiny Tim) grown in open-top chambers in the field. Our results indicate that benomyl prevented the peroxidation of membrane lipids and increased protection of PSII from ozone. There was also a significant reduction in the activity of the antioxidant enzyme superoxide dismutase in ozone-exposed plants that had not been treated with benomyl. Comparing plants treated with benomyl to untreated plants we found that, on exposure to ozone, a greater fraction of light absorption energy was cycled through the photosynthetic system in benomyl-treated plants, as shown by the higher PSII-mediated electron flow and the higher fraction of open PSII reaction centers. The values analyzed in the fluorescence parameters and lipid peroxidation were similar for plants without benomyl grown in a charcoal-filtered environment and benomyl-treated plants exposed to ozone.  相似文献   

9.
Spruce saplings were grown under different nitrogen fertilization regimes in eight chamberless fumigation systems, which were fumigated with either charcoal-filtered (F) or ambient air (O3). After the third growing season trees were harvested for biomass and non-structural carbohydrate analysis. Nitrogen had an overall positive effect on the investigated plant parameters, resulting in increased shoot elongation, biomass production, fine root soluble carbohydrate concentrations, and also slightly increased starch concentrations of stems and roots. Only needle starch concentrations and fine root sugar alcohol concentrations were decreased. Ozone fumigation resulted in needle discolorations and affected most parameters negatively, including decreased shoot elongation and decreased starch concentrations in roots, stems, and needles. In fine roots, however, soluble carbohydrate concentrations remained unaffected or increased by ozone fumigation. The only significant interaction was an antagonistic effect on root starch concentrations, where higher nitrogen levels alleviated the negative impact of ozone.  相似文献   

10.
Ozone is very toxic to tobacco, causing serious injury in greenhouses and fields. Certain varieties, differing in sensitivity, have proved useful as indicators of the presence, and to some extent the level, of air-polluting ozone. Environmental factors alter plant response to ozone and must be taken into account. What is now recognized as typical ozone injury to tobacco was first observed in Connecticut in 1951, Maryland in 1952, eastern North Carolina in 1953, and Ontario, Canada, in 1955. Cracking of rubber strips exposed daily at six locations in 1959 in the Connecticut Valley showed ozone concentrations were highest the day before a fleck outbreak, resulting in more than a million dollar loss. Measurement with a Mast ozone recorder from July to mid-October for two seasons at Beltsville, Md., six miles northeast of the District of Columbia, indicated 2.5 pphm as the average daily maximum value, 5 pphm as the level when plant injury is expected, and 10 pphm as very high and infrequent. The neutral buffered Kl method indicated higher ozone values, but about 15 pphm was maximum with this method. Shading portions of leaves for three hours in midday prevented ozone injury. Increased injury in the different tobacco areas was related to increased culture of more susceptible varieties. Although various antiozonants applied to the leaf, or even applied to cloth shade, reduce damage, the development of resistant tobaccos has proved the better means of control. Premature senescence and related chlorosis as well as fleck were prevented by carbon-filtered air, indicating that ozone may be a more important toxicant than previously recognized. Possibly oxidants other than ozone contributed to plant injury, but, if present, they were removed by carbon-filters. Growth of an ozone-sensitive tobacco Bel-W3, as indicated by dry weight, was only half as much in ambient as in carbonfiltered air in one experiment with chambers continued for 5 weeks. Evidence of synergistic action of sulfur dioxide and ozone is reported. Subthreshold concentrations of these toxicants produced injury following exposure of tobacco to mixed gases, whereas no injury resulted from the same concentration of the individual gases.  相似文献   

11.
Ameliorative effects of ethylenediurea (N-[2-(2-oxo-1-imidazolinidyl) ethyl]-N′ phenylurea, abbreviated as EDU) against ozone stress were studied on selected growth, biochemical, physiological and yield characteristics of palak (Beta vulgaris L. var Allgreen) plants grown in field at a suburban site of Varanasi, India. Mean eight hourly ozone concentration varied from 52 to 73 ppb which was found to produce adverse impacts on plant functioning and growth characteristics. The palak plants were treated with 300 ppm EDU at 10 days after germination at 10 days interval up to the plant maturity. Lipid peroxidation in EDU treated plants declined significantly as compared to non-EDU treated ones. Significant increment in Fv/Fm ratio in EDU treated plants as compared to non-EDU treated ones was recorded. EDU treated plants showed significant increment in ascorbic acid contents and reduction in peroxidase activity as compared to non-EDU treated ones. As a result of the protection provided by EDU against ozone induced stress on biochemical and physiological characteristics of palak, the morphological parameters also responded positively. Significant increments were recorded in shoot length, number of leaves plant−1, leaf area and root and shoot biomass of EDU treated plants as compared to non-EDU treated ones. Contents of Na, K, Ca, Mg and Fe were higher in EDU treated plants as compared to non-EDU treated ones. The present investigation proves the usefulness of EDU in partially ameliorating ozone injury in ambient conditions.  相似文献   

12.
At least two supersensitive tobacco somaclones were obtained from tissue culture (TC) , when this approach was used to asexually propagate Bel-W3 tobacco indicator plants. These somaclones can detect as low as 30 ppb ozone for a 4-h exposure duration both within CSTR exposure chambers and in ambient air. Comparison of the injury index and their coefficient of variance showed that the TC plantlets usually have more uniform performance in response to ozone in addition to their higher sensitivity. A quick regeneration procedure was established to preserve the supersensitive germplasm immediately when it was found. The TC plantlets will flower and produce seed similar to seed-grown tobacco. The TC approach proved to be a better propagation system for valuable indicator plant species. The mechanism that causes the variation and the possible difference in their genome from seed-grown tobacco is still unknown. Further studies are needed in the future to determine if factors in the TC system may be responsible for the sensitivity difference.  相似文献   

13.
Spartina alterniflora plants were collected from salt marshes within New Jersey, South Carolina, and Georgia USA and shipped to The Pennsylvania State University. New plants were grown from rhizomes in six open-top field chambers. Three chambers received charcoal-filtered air, and three received charcoal-filtered air plus 80 ppb ozone, 8 h/day for 65 days. Flower, leaf, and shoot number per plant were recorded weekly. Photosynthetic rates were measured in week 5, and foliar injury was assessed during week 9. Final dry weight of roots, shoots, and rhizomes were determined. While ozone-treated plants from all states expressed symptoms of ozone injury, plants from South Carolina exhibited no effect of ozone on any other measured variable. Plants from the Georgia site showed ozone-induced reductions in all measured variables except leaf dry weight. Ozone-treated plants from New Jersey showed reductions in photosynthetic rate, leaf and shoot number, and root dry weights. Only plants from New Jersey produced flowers, with ozone treatment causing delay in flowering and reduction in the number of flower spikes produced.  相似文献   

14.
Brazilian soybean cultivars (Glycine max Sambaíba and Tracajá) routinely grown in Amazonian areas were exposed to filtered air (FA) and filtered air enriched with ozone (40 and 80 ppb, 6 h/day for 5 days) to assess their level of tolerance to this pollutant by measuring changes in key biochemical, physiological, and morphological indicators of injury and in enzymatic and non-enzymatic antioxidants. Sambaíba plants were more sensitive to ozone than Tracajá plants, as revealed by comparing indicator injury responses and antioxidant stimulations. Sambaíba exhibited higher visible leaf injury, higher stomatal conductance, and a severe decrease in the carbon assimilation rate. Higher ozone level (80 ppb) caused an increase in cell death in both cultivars. Levels of malondialdehyde and hydrogen peroxide also increased in Tracajá exposed under 80 ppb. Sambaíba plants exhibited decreases in ascorbate and glutathione levels and in enzymatic activities associated with these antioxidants. The higher tolerance of the Tracajá soybean appeared to be indicated by reduced physiological injuries and lower stomatal conductance, which might decrease the influx of ozone and enhance oxidation-reduction reactions involving catalase, ascorbate peroxidase, ascorbate, and glutathione, most likely stimulated by higher hydrogen peroxide.  相似文献   

15.
To study the biochemical mechanism of EDU protection against ozone injury, peroxidase, ascorbate-dependent peroxidase, and catalase activities, and the contents of ascorbic acid, dehydroascorbic acid, malondialdehyde and soluble protein were measured in Phaseolus vulgaris L. cv. Lit exposed to ozone and ethylenediurea (EDU) in open-top chambers. Plants not treated with EDU showed foliar bronzing due to ozone, while EDU-treated plants were not affected. EDU application modified the reaction of biochemical parameters to ozone. Soluble protein content was elevated by EDU. Peroxidase activity increased with ozone exposure in untreated plants only, while ascorbate-dependent peroxidase activity was lower in EDU treated plants. Catalase activity decreased in EDU-untreated plants. The ratio of ascorbic acid to dehydroascorbic acid was significantly increased in EDU treated plants. These results suggest that EDU might induce ascorbic acid synthesis and therefore provide the plant with a very potent antioxidant. Or the content of hydrogen peroxide was reduced due to other unknown processes and caused a delay in foliar senescence, regardless of whether these processes were ozone-induced or due to natural aging processes.  相似文献   

16.
A meta-analysis was conducted to quantitatively assess the effects of ethylenediurea (EDU) on ozone (O3) injury, growth, physiology and productivity of plants grown in ambient air conditions. Results indicated that EDU significantly reduced O3-caused visible injury by 76%, and increased photosynthetic rate by 8%, above-ground biomass by 7% and crop yield by 15% in comparison with non-EDU treated plants, suggesting that ozone reduces growth and yield under current ambient conditions. EDU significantly ameliorated the biomass and yield of crops and grasses, but had no significant effect on tree growth with an exception of stem diameter. EDU applied as a soil drench at a concentration of 200-400 mg/L has the highest positive effect on crops grown in the field. Long-term research on full-grown tree species is needed. In conclusion, EDU is a powerful tool for assessing effects of ambient [O3] on vegetation.  相似文献   

17.
Nali C  Balducci E  Frati L  Paoli L  Loppi S  Lorenzini G 《Chemosphere》2007,67(11):2169-2176
A biennial integrated survey, based on the use of vascular plants for the bioindication of the effects of tropospheric ozone together with the use of automatic analysers of ozone, as well as the mapping of lichen biodiversity was performed in the area of Castelfiorentino (Tuscany, central Italy). Photochemically produced ozone proved to be a fundamental presence during the warm season, with maximum hourly means reaching 114 ppb, exceeding the information threshold as fixed by EU: the use of supersensitive tobacco Bel-W3 confirmed the opportunity of carrying out detailed cost-effective monitoring surveys. The potential for didactical and educational implications of this methodology are appealing. Critical levels set up for the protection of vegetation have exceeded considerably. The comparison of biomass productivity in sensitive and resistant individuals (NC-S and NC-R white clover clones, in the framework of an European network) provided evidence that ambient ozone levels are associated with relevant reduction (up to 30%) in the performance of sensitive material; effects on flowering were also pronounced. The economic assessment of such an impact deserves attention. Mapping of epiphytic lichen biodiversity – which has been used to monitor air quality worldwide – was not related to ozone geographical distribution as depicted by tobacco response.  相似文献   

18.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides X nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (Experiment 1) and during 1989 and 1990 (Experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In Experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season; then the plants were grown outdoors with ambient ozone in 1989. In Experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season; then the plants were grown outdoors with ambient ozone in 1990. Shallow wounds were made into the bark tissue and inoculated with either an aqueous suspension of conidia of Mycosphaerella populorum or sterile water on 1 and 2 September 1988 (Experiment 1) or 16 and 17 August 1989 (Experiment 2). In Experiment 1, wounds were inoculated either 0, 7, or 14 days after wounding. In Experiment 2, wounds were inoculated either 0, 3, or 6 days after wounding. Canker development was measured after harvest on 16 and 17 July 1989 (Experiment 1) and 28 May 1990 (Experiment 2). In both experiments, chronic exposure to ozone significantly increased the incidence of canker formation in inoculated wounds, and no cankers formed in wounds that received only sterile water. In Experiment 1, cankers formed only on plants inoculated the same day as wounding. No cankers formed on plants inoculated either 7 or 14 days after wounding. In Experiment 2, cankers formed on plants inoculated on the same day as wounding, and on a few plants inoculated 3 days after wounding. No cankers formed on plants inoculated 6 days after wounding. Additionally, in Experiment 2, exposure to increased concentrations of ozone caused a significantly higher number of plants to die during the subsequent winter. Analysis of partial correlation coefficients among plant growth and plant disease variables suggested that the observed ozone-induced increase in the susceptibility of the plants to disease was not mediated by alterations in plant growth.  相似文献   

19.
Potted plants of radish (Raphanus sativus L., cv. Cherry Belle) were grown in the ambient air for 5 weeks, with or without the application of a soil drench of the anti-ozonant ethylenediurea (EDU). The 24-h mean ozone concentration during the experimental period was 31 nl l(-1). Towards the end of the experiment two ozone episodes, with maximum concentrations around 70 and 115 nl l(-1), occurred. No visible injury that could be attributed to ozone was observed on any of the plants. Shoot and hypocotyl biomass were significantly lower in the non-EDU-treated plants than in the EDU-treated plants. The non-EDU-treated plants had a 32% lower hypocotyl biomass and a 22% lower shoot biomass. The shoot:hypocotyl ratio of the non-EDU-treated plants was higher than that of the EDU-treated plants, although the difference was not statistically significant. EDU treatment increased the leaf area and decreased the chlorophyll content of the leaves. These differences were, however, not statistically significant. It is suggested that the ambient rural ozone climate in southern Sweden has the potential to decrease biomass production in Cherry Belle radishes in the absence of visible injury.  相似文献   

20.
Saitanis CJ 《Chemosphere》2003,51(9):913-923
Natural background ozone levels were monitored in three places within the greater rural area of Corinth, namely Bogdani Hill, Astronomical Observatory of Krionerion, and Kiato, and compared with ambient ozone monitored in the metropolitan area of Athens. Measurements were made sequentially, for a few weeks at each place, during the summer of 2000. In addition, ozone phytodetection, using tobacco (Nicotiana tabacum L.) plants of the Bel-W3 and Zichnomirodata varieties, was conducted in 12 places (the above included). Moreover, stomatal conductance was measured in the Bel-W3 plants, as well as in leaves of cultivated grape-vines (Vitis vinifera L.) and in needles of Aleppo pine (Pinus halepensis Mill.) trees and compared with the diurnal pattern of ozone concentrations.The 24 and 12 (08:00-20:00) hourly averages of ozone concentrations were high in Athens (37; 51 ppb), at Bogdani Hill (53; 56 ppb) and at the Astronomical Observatory (56; 55 ppb), but relatively low in Kiato (30; 34 ppb). Furthermore, the average daily AOT40 (accumulated exposure over 40 ppb for the daylight hours) (ppbh) was 193 in Athens, 212 at Bogdani Hill, 192 at the Astronomical Observatory and 47 in Kiato. Ozone concentrations exhibited the usual diurnal pattern in Athens (altitude 50 m), where they were maximum during midday and early afternoon hours, as well as at Bogdani Hill (300 m) and in Kiato (5 m) where, however, they were maximal 1-3 h later. At the Astronomical Observatory (altitude 920 m) ozone remained constant during both daylight and night hours. The differences in diurnal patterns are consistent with those in places of different elevation, reported elsewhere.The Bel-W3 plants were injured at all 12 places; Zichnomirodata plants exhibited lower injury and only in some of the places; probable ozone symptoms were also observed on vine plants and pine trees. The greatest injury was observed at the high altitude places of Astronomical Observatory and Mougostos. Stomatal conductance, in all three species, peaked during morning and early midday hours when ozone levels were higher in the high altitude, and lower in the low altitude, places.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号