首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

This article describes an effort to re-examine the scientific bases of the existing, more than two decades-old U.S. Environmental Protection Agency (EPA) policy on volatile organic compound reactivity in light of recent scientific knowledge and understanding. The existing policy allows “negligibly reactive” organic emissions, that is, emissions with ambient ozone production potential lower than that of ethane, to be exempted from all ozone regulations. It relies on use of kOH and incremental reactivity data for determining whether an organic compound is negligibly reactive. Recent scientific evidence suggests that (1) exempting the negligibly reactive organic emissions from all regulations is unjustifiable, (2) the choice of ethane as the benchmark organic species for distinguishing reactive from negligibly reactive organics may be inappropriate, (3) the assumptions and methods used for classifying organic compounds as “reactive” and “negligibly reactive” should be reconsidered, and (4) the volatility factor should be considered, more appropriately, in much the same way as the reactivity factor.  相似文献   

2.
Potential benefits of a continuous monitoring program are presented in the form of questions that can be asked in connection with the information gained from the program. These questions are:

1. Are there process problems of which we are unaware?

2. Will this information be useful in the design of the next plant?

3. Can the information be used for improved process control?

4. Are we losing valuable material?

5. Can we use this information to modify our process for reduced pollution?  相似文献   

3.
ABSTRACT

Volatile organic compounds (VOCs) evaporate and vent from a vehicle’s fuel tank to its evaporative control system when the vehicle is both driven and parked. VOCs making it past the control system are emissions. Driving and parking activity, fuel volatility, and temperature strongly affect vapor generation and the effectiveness of control technologies, and the wide variability in these factors and the sensitivity of emissions to these factors make it difficult to estimate evaporative emissions at the macro level. Established modeling methods, such as COPERT and MOVES, estimate evaporative emissions by assuming a constant in-use canister condition and consequently contain critical uncertainty when real conditions deviate from that standard condition. In this study, we have developed a new method to model canister capacity as a representative variable, and estimated emissions for all parking events based on semi-empirical functions derived from real-world activity data and laboratory measurements. As compared to chamber measurements collected during this study, the bias of the MOVES diurnal tank venting simulation ranges from ?100% to 129%, while the bias for our method’s simulation is 1.4% to 8.5%. Our modeling method is compared to the COPERT and MOVES models by estimating evaporative emissions from a Euro-3/4/5 and a Tier 2 vehicle in conditions representative for Chicago, IL, and Guangzhou, China. Estimates using the COPERT and MOVES methods differ from our method by ?56% to 120% and ?100% to 25%, respectively. The study highlights the importance for continued modeling improvement of the anthropogenic evaporative emission inventory and for tightened regulatory standards.

Implications: The COPERT and MOVES methodologies contain large uncertainties for estimating evaporative emissions, while our modeling method is developed based on chamber measurements to estimate evaporative emissions and can properly address those uncertainties. Modeling results suggested an urgent need to complete evaporative emissions inventories and also indicated that tightening evaporative emission standards is urgently needed, especially for warm areas.  相似文献   

4.
Abstract

Grass, and particularly cut grass, recently has been shown to emit significant amounts of volatile organic compounds (VOCs) into the atmosphere. Some components of these emissions are highly reactive and may contribute to photochemical smog in urban areas. A simple model for estimating the VOC emissions from grass and for grass cutting that allows these processes to be included in urban/regional emissions inventories is presented here. Using previous work and recent literature values, estimates are made of these biogenic volatile organic compound (BVOC) emissions for two typical urban airsheds, those including the cities of Sydney and Melbourne in Australia. Grass and cut grass could contribute ~2% for Sydney and 3% for Melbourne of the total VOCs emitted into these urban atmospheres annually. These contributions could rise to 4 and 5%, respectively, during the weekends of the summer growing season and, thus, could contribute to weekday/weekend ozone differences. It is recommended that the emissions of BVOCs from grass and cut grass be included in urban and global emissions inventories so that more accurate predictions of smog chemistry can be determined.  相似文献   

5.
Abstract

The effects of aeration recirculation on oxygen transfer and the fate of five volatile organic compounds (VOCs) commonly found in publicly owned treatment works (POTWs) influent are studied using various modeling approaches. The five compounds are benzene, chloroform, methylene chloride, toluene, and trichloroethylene. The models predict that the overall oxygen transfer efficiency can be increased by 96.7% at 50% aeration recirculation with only a 9.6% drop in oxygen transfer rate. The emission reductions and biodegradation improvements are compound specific; for the compounds investigated here, about 40% emission reductions and 16% biodegradation increases can be achieved at 50% aeration recirculation. The temperature effect on the VOC fate mechanisms is also investigated. Overall, the model predictions reveal that up to 50% aeration recirculation is effective in controlling VOC emissions.  相似文献   

6.
Abstract

The purpose of this paper is to demonstrate how to develop an air pollution monitoring network to characterize small-area spatial contrasts in ambient air pollution concentrations. Using residential woodburning emissions as our case study, this paper reports on the first three stages of a four-stage protocol to measure, estimate, and validate ambient residential woodsmoke emissions in Vancouver, British Columbia. The first step is to develop an initial winter nighttime woodsmoke emissions surface using inverse-distance weighting of emissions information from consumer woodburning surveys and property assessment data. Second, fireplace density and a compound topo-graphic index based on hydrological flow regimes are used to enhance the emissions surface. Third, the spatial variation of the surface is used in a location-allocation algorithm to design a network of samplers for the woodsmoke tracer compound levoglucosan and fine particulate matter. Measurements at these network sites are then used in the fourth stage of the protocol (not presented here): a mobile sampling campaign aimed at developing a high-resolution surface of woodsmoke concentrations for exposure assignment in health effects studies. Overall the results show that relatively simple data inputs and spatial analysis can be effective in capturing the spatial variability of ambient air pollution emissions and concentrations.  相似文献   

7.
ABSTRACT

U.S. Tier 4 Final and Euro Stage IV and V regulations for nonroad compression-ignition engines have led to the development of exhaust aftertreatment technologies optimized for nonroad engines and duty cycles. In this study, several aftertreatment configurations consisting of state-of-the-art diesel oxidation catalysts (DOCs), diesel particulate filters (DPFs), copper (Cu) zeolite– and vanadium-based selective catalytic reduction (SCR) catalysts, and ammonia oxidation (AMOX) catalysts are evaluated using both nonroad transient (NRTC) and steady (8-mode NRSC) cycles in order to understand both component- and system-level effects of diesel aftertreatment on gas-phase, semivolatile, and particle-phase and particle-bound unregulated organic emissions. Organic emissions reported in this work include total hydrocarbon (THC), n-alkanes, branched alkanes, saturated cycloalkanes, aromatics, aldehydes, ketones, hopanes, steranes, and soluble organic fraction (SOF). Brake-specific emissions are reported for four configurations, including engine-out, DOC+CuZ-SCR+AMOX, V-SCR+AMOX, and DOC+DPF+CuZ-SCR+AMOX, and conversion of engine-out emissions is reported for the three aftertreatment configurations. Mechanisms responsible for the reduction of organic species are discussed in detail. This summary of emissions from a current nonroad diesel engine equipped with advanced aftertreatment can be used to more accurately model the impact of anthropogenic emissions on the atmosphere with tools such as the U.S. Environmental Protection Agency’s Motor Vehicle Emissions Simulator (MOVES2014a) model.

Implications: Anthropogenic emissions are a source of significant human health and environmental risk. This study, focused on the treatment of exhaust emissions from a modern nonroad diesel engine with a variety of aftertreatment configurations, examines the impact that human industrial activity can have on air pollution. In particular, we focus on the remediation of gas-phase and semivolatile organic emissions by emission reduction technologies. This detailed summary of emissions from a current nonroad diesel engine equipped with advanced aftertreatment can be used to more accurately model the impact of anthropogenic emissions on the atmosphere with tools such as the U.S. Environmental Protection Agency’s MOVES2014a model.  相似文献   

8.
Abstract

A method using direct flame ionization detector (FID) measurement was developed to study total volatile organic compound (VOC) emissions during thermal degradation of polymers. This method was used to estimate organic emissions from different polymers, such as low-density polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and commingled postconsumer streams, such as recycled carpet residue and auto shredder residue (ASR). The effects of process parameters, such as temperature, heating rate, and residence time, were also studied. Significant VOC emissions were observed at normal processing temperatures, particularly from recycled polymers. Each polymer showed a distinct evolution pattern during its thermal degradation. The kinetics of VOC emissions were also studied using a nonisothermal technique. The kinetic parameters were in agreement with data from the literature.  相似文献   

9.
Abstract

Societal and governmental pressures to reduce diesel exhaust emissions are reflected in the existing and projected future heavy-duty certification standards of these emissions. Various factors affect the amount of emissions produced by a heterogeneous charge diesel engine in any given situation, but these are poorly quantified in the existing literature. The parameters that most heavily affect the emissions from compression ignition engine-powered vehicles include vehicle class and weight, driving cycle, vehicle vocation, fuel type, engine exhaust aftertreatment, vehicle age, and the terrain traveled. In addition, engine control effects (such as injection timing strategies) on measured emissions can be significant. Knowing the effect of each aspect of engine and vehicle operation on the emissions from diesel engines is useful in determining methods for reducing these emissions and in assessing the need for improvement in inventory models. The effects of each of these aspects have been quantified in this paper to provide an estimate of the impact each one has on the emissions of diesel engines.  相似文献   

10.
The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM10 filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6?%. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.  相似文献   

11.
Abstract

Approximately 80 different crop species are grown in the United States in widely differing geographic areas, climatic and edaphic conditions, and management practices. Although the majority of cultivated acreage in the United States is planted with only about 10 primary crops, uncertainties associated with trace gas emissions arise from: (1) limited data availability, (2) inaccurate estimates because of large temporal and spatial variability in trace gas composition and magnitude of trace gas emissions from agricultural activities, (3) differing characteristics of pollutant emissions from highly dispersed animal feed-lots, and (4) limited understanding of the emissions of semi-volatile organic compounds (SVOCs) associated with agriculture. Although emission issues are of concern, so also is atmospheric deposition to cropping systems, including wet and dry nitrogen, minerals, and organic compounds. These can have feedback effects on trace gas emissions. Overall, the many gaps in our understanding of these aspects of agricultural systems deserve serious attention.  相似文献   

12.
ABSTRACT

A laboratory thermal desorption apparatus was used to measure emissions from a number of nominally identical photocopier toners—manufactured to meet the specifications of one specific model copier—when these toners were heated to fuser temperature (180-200 °C). The objective was to assess how potential volatile organic compound (VOC) emissions from the toner for a given copier can vary, depending upon the production run and the supplier. Tests were performed on a series of toner (and associated raw polymer feedstock) samples obtained directly from a toner manufacturer, representing two production runs using a nonvented extrusion process, and on toner cartridges purchased from two local retailers, representing three different production lots (histories unknown). The results showed that the retailer toners consistently had up to 350% higher emissions of some major compounds (expressed as |ig of compound emit-ted/g of toner), and up to 100% lower emissions of others, relative to the manufacturer toners (p ≤ 0.01). The manufacturer toners from one production run had emissions of certain compounds, and of total VOCs, that were modestly higher (13-18%) than those from the other run (p ≤ 0.01). The emission differences between the retailer and manufacturer toners are probably due to differences  相似文献   

13.
ABSTRACT

This paper presents a methodology for the development of a high-resolution (30-m), standardized biogenic volatile organic compound (BVOC) emissions inventory and a subsequent application of the methodology to Tucson, AZ. The region's heterogeneous vegetation cover cannot be modeled accurately with low-resolution (e.g., 1-km) land cover and vegetation information. Instead, local vegetation data are used in conjunction with multispectral satellite data to generate a detailed vegetation-based land-cover database of the region. A high-resolution emissions inventory is assembled by associating the vegetation data with appropriate emissions factors. The inventory reveals a substantial variation in BVOC emissions across the region, resulting from the region's diversity of both native and exotic vegetation.

The importance of BVOC emissions from forest lands, desert lands, and the urban forest changes according to regional, metropolitan, and urban scales. Within the entire Tucson region, the average isoprene, monoterpene, and  相似文献   

14.
Abstract

With the recent focus on fine particle matter (PM2.5),new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference.The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2, nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of ~10-4 lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with ~5 × 10-3 lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of ~0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or woodfueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing “true” particulate carbon emission results.  相似文献   

15.
Abstract

Presently, no standard test method exists to evaluate the various emissions from office equipment (e.g., ozone, volatile organic compounds, inorganic gases, and particulates) so it is difficult to compare data from different studies.1 As a result, the authors are developing a standardized guidance document for measuring indoor air emissions from office equipment. The ultimate goal is to apply the test method to better understand emissions from office equipment and to develop lower emitting machines. This paper provides background information on indoor air emissions from office equipment with an emphasis on dry-process photocopy machines. The test method is described in detail, along with the results of a study to evaluate the test method using four dry-process photocopy machines.

The results from this study indicate that the test method provides acceptable performance for characterizing emissions; that it can adequately identify differences in emissions between machines both in compounds emitted and their emission rates; and that it is capable of measuring both intra- and inter-machine variability in emissions. Challenges and complications were encountered in developing and implementing the test method. These included heat generation, which can cause large increases in chamber temperature; finite paper supplies for photocopy machines, which limit test duration; varying power requirements that may require changes in chamber electrical supply; and remote starting of the machines, which is necessary to maintain chamber integrity.

Results show that dry-process photocopy machines can produce emissions of ozone and volatile organic compounds that can potentially have a significant impact on indoor air quality. For the four machines tested in this study, the compounds with the highest emission rates overall were ethylbenzene (28,000 µg/hour), m,p-xylenes (29,000 µg/hour), o-xylene (17,000 µg/hour), 2-ethyl-lhexanol (14,000 µg/hour), and styrene (12,000 fig/hour). Although many of the same compounds tended to be detected in emissions from each of the four photocopiers, the relative contribution of individual compounds varied considerably between machines, with differences greater than an order of magnitude for some compounds.  相似文献   

16.

Studies on the production of biogas of different organic materials in an anaerobic environment are being carried out all over the world. The most important parameters in these researches can be listed as raw material potential, production processes, economic analyses, and environmental effects. Chicken manure is one of the raw materials used in biogas production. In this study, in addition to the analysis of biogas and energy production potential from chicken manure, greenhouse gas emissions were analyzed to evaluate environmental effects. In Turkey, chicken manure is not adequately processed and causes environmental pollution. The model biogas plant and potential energy generation were researched in this field study. The pilot plant produces 8.58 million m3 of biogas per year by processing about 110 thousand tons of waste. It produces 17 GWh/year of electricity and 16 GWh/year of thermal energy, as well as reducing CO2 greenhouse gas emissions by 13.86 thousand tons/year.

  相似文献   

17.
ABSTRACT

Many recent works have dealt with the influence of fuel composition on regulated and specific pollutant emissions from spark ignition engines. While many qualitative correlations have been already proposed, only a few quantitative ones are known (benzene remains an exception).

This paper describes qualitative and quantitative correlations between fuel composition and specific pollutant emissions (individual hydrocarbons, aldehydes, ketones, alcohols, and organic acids) of a spark ignition engine. The aim of this work was to find the precursors of the main specific pollutants. Then, for each of them, a multilinear equation has been calculated, illustrating the correlation between its concentration in exhaust gases and its content in the fuel. The results of these calculations point out which initial compound favors the formation of a determined pollutant. As lean conditions are probably going to be used in future commercial engines, the fuel effect has been studied for a broad range of equivalence ratios (from 0.8 to 1.2).  相似文献   

18.
ABSTRACT

The organic fraction of aerosol emitted from a vegetable oil processing plant was studied to investigate the contribution of emissions to ambient particles in the surrounding area. Solvent-soluble particulate organic compounds emitted from the plant accounted for 10% of total suspended particles. This percentage was lower in the receptor sites (less than 6% of total aerosol mass). Nonpolar, moderate polar, polar, and acidic compounds were detected in both emitted and ambient aerosol samples. The processing and combustion of olive pits yielded a source with strong biogenic characteristics, such as the high values of the carbon preference index (CPI) for all compound classes. Polycyclic aromatic hydrocarbons (PAHs) detected in emissions were associated with both olive pits and diesel combustion. The chromatographic profile of dimethyl-phenanthrenes (DMPs) was characteristic of olive pit combustion. Organic aerosols collected in two receptor sites provided a different pattern.

The significant contribution of vehicular emissions was identified by CPI values (~1) of n-alkanes and the presence of the unresolved complex mixture (UCM). In addition, PAH concentration diagnostic ratios indicated that emissions from catalyst and noncatalyst automobiles and heavy trucks were significant. The strong even-to-odd predominance of n-alkanols, n-alkanoic acids, and their salts indicated the contribution of a source with biogenic characteristics. However, the profile of DMPs at receptor sites was similar to that observed for diesel particulates. These differences indicated that the contribution of vegetable oil processing emissions to the atmosphere was negligible.  相似文献   

19.
Abstract

Large-scale studies like the Southeast Michigan Ozone Study (SEMOS) have focused attention on quantifying and spedating inventories for volatile organic compounds (VOCs). One approach for evaluating the accuracy of a VOC emission inventory is the development of a chemical mass balance (CMB) receptor model for ambient non-methane organic compound (NMOC) measurements. CMB evaluations of ambient hydrocarbon data provide a sample-specific allocation of emissions to individual source categories. This study summarizes the results of an application of the CMB model to the NMOC data from the SEMOS study. Comparison of CMB results with emission inventory values for the Detroit area show that vehicle emissions are well represented by the inventory, as are architectural coatings and coke ovens. Estimated emissions from petroleum refineries and graphic arts industries are much lower in the inventory than determined from the receptor allocation. Under-reporting of fugitive VOC emissions from petroleum refineries is an ongoing problem. Emissions from graphic arts industries are underestimated in the inventory partly because of the broad characterization of the emission factor (i.e., mass emitted/capita), which may be less useful when specific locations and days are under consideration. This study also demonstrates the effectiveness of the CMB approach when used prospectively to track the implementation of emission control strategies. While vehicle emission concentrations were unchanged from 1988 to 1993, measurement-based CMB results suggest a decrease in evaporative emissions during this time period resulting from Reid vapor pressure (RVP) reductions (from 11.0 psi in 1988 to 8.6 psi in 1993) and fleet turnover. Changes in emissions from coke plants and petroleum refineries were also seen in the CMB allocations for these sources.  相似文献   

20.
Emission inventories are the foundation for cost-effective air quality management activities. In 2005, a report by the public/private partnership North American Research Strategy for Tropospheric Ozone (NARSTO) evaluated the strengths and weaknesses of North American emissions inventories and made recommendations for improving their effectiveness. This paper reviews the recommendation areas and briefly discusses what has been addressed, what remains unchanged, and new questions that have arisen. The findings reveal that all emissions inventory improvement areas identified by the 2005 NARSTO publication have been explored and implemented to some degree. The U.S. National Emissions Inventory has become more detailed and has incorporated new research into previously under-characterized sources such as fine particles and biomass burning. Additionally, it is now easier to access the emissions inventory and the documentation of the inventory via the internet. However, many emissions-related research needs exist, on topics such as emission estimation methods, speciation, scalable emission factor development, incorporation of new emission measurement techniques, estimation of uncertainty, top-down verification, and analysis of uncharacterized sources. A common theme throughout this retrospective summary is the need for increased coordination among stakeholders. Researchers and inventory developers must work together to ensure that planned emissions research and new findings can be used to update the emissions inventory. To continue to address emissions inventory challenges, industry, the scientific community, and government agencies need to continue to leverage resources and collaborate as often as possible. As evidenced by the progress noted, continued investment in and coordination of emissions inventory activities will provide dividends to air quality management programs across the country, continent, and world.

Implications: In 2005, a report by the public/private partnership North American Research Strategy for Tropospheric Ozone (NARSTO) evaluated the strengths and weaknesses of North American air pollution emissions inventories. This paper reviews the eight recommendation areas and briefly discusses what has been addressed, what remains unchanged, and new questions that have arisen. Although progress has been made, many opportunities exist for the scientific agencies, industry, and government agencies to leverage resources and collaborate to continue improving emissions inventories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号