首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proper electrical energization methods and equipment are the keys to successful electrostatic precipitation. The design, operation, and application of conventional high voltage power supplies in this process are reviewed. Emphasis is on requirements and methods of achieving the high performance and reliability necessary in modern air pollution control systems. Typical field data on operations and effects in various precipitator applications, including high resistivity ash, high temperature, and/or high pressure gas treatment, are discussed.  相似文献   

2.
Demands for high performance and reliability of electrostatic precipitators for collection of fly ash from low sulfur fuels has led to rapid escalation of sizes and uncertainties in sizings of cold-side precipitators. This has led to utilization of the so-called “hot-side” precipitator. The underlying concept of hot-side precipitation is the avoidance of the necessity to operate the precipitator under high resistivity conditions. Data on in-situ measurements of resistivity of low sulfur fuel ash, as well as performance parameters of a number of operating installations, will be reviewed. These data will demonstrate the reduced sensitivity of hot-side precipitator sizing to fuel conditions. Other advantages of hot-side precipitators will be discussed.

Operating experience with hot-side precipitators has focused on structural problems which are peculiar to the larger, higher temperature installations. The nature and solution of these problems will be discussed. General comparative economics of hot-side and cold-side precipitators as they relate to fuel properties will be reviewed.  相似文献   

3.
The relationship between sulfur in coal, boiler exit gas temperature, and the carbon portion of fly ash have a major effect on the electrical properties of fly ash. Whether effective collection of fly ash is obtained by the electrostatic precipitator installation alone or the precipitator—mechanical combination depends primarily on a knowledge of this relationship. Fly ash electrical properties can range from a highly "resistive" to a highly "conductive" state which can appreciably alter the precipitator collection performance. A correlation of coal sulfur and boiler exit flue gas temperature is given to indicate the probability of expecting an optimum voltage—current relationship with different combinations of these factors. Carbon affects the electrical conditioning of fly ash by providing parallel paths of current leakage through the deposited dust layer. Therefore, removal of the carbon particles in a mechanical collector placed before the precipitator can alter the precipitator electrical characteristics.  相似文献   

4.
The objective of this paper is to describe the Tennessee Valley Authority's efforts and plans in designing an operating and maintenance program that will ensure maximum performance of the electrostatic precipitators at our power generating stations. Detailed operating and maintenance manuals are being prepared for each plant for the use of plant personnel. These manuals include instructions on operation, maintenance, and testing of the precipitators. Instructions on internal and external equipment inspections to be performed during unit operation, emergency and scheduled outages, and problem diagnostic procedures are included to help the plant personnel solve problem areas. Performance curves are included in the manuals which show the effect of gas volume flow, gas temperature, gas resistivity, coal changes, and loss of transformer-rectifier sets on the precipitator performance. In addition, opacity monitors that record continuous opacity readings are being installed at all our plants to assist the plant in monitoring precipitator performance. Full-time operating and maintenance crews are being organized at the plants to monitor and maintain the precipitator and ash-removal systems. Also, a staff of technical personnel is being organized at the central office to provide technical advice and assistance in design, operation, and maintenance problems and liaison and coordination for all the plants concerning the precipitators. Periodic precipitator field inspections, performance and operating parameter optimization testing, and review of the equipment operating logs are made by the central office technical personnel. Recommendations and technical assistance are then furnished to the plant with regard to the precipitator overall performance and operating characteristics.  相似文献   

5.
Compliance with particulate standards for utility boilers burning low sulfur western coal has resulted in the installation and proposed installation of several fabric filter collectors where cold or hot electrostatic precipitators would have traditionally been applied. Recently, SO3 conditioning has been used to improve cold precipitator performance resulting in considerable reduction in specific collection area (SCA). All this suggests that trade-offs exist indicating ranges of SCA, A/C ratio, and power plant size (Mw) where fabric filters become competitive with electrostatic precipitators. Conceptual cost models are presented which indicate total capital investment and annual costs for the control devices. Precipitator costs are correlated with collecting area, gas flow rate, and power input and are presented as functions of SCA and Mw. Fabric filter costs are keyed to gross filter area, pressure drop, and gas flow rate. Fabric filters become competitive when a cold precipitator requires SCAs in excess of 600 to 800 and competitive when a hot precipitator requires equivalent cold precipitator SCAs in excess of 600 to 1000 depending on A/C ratio, Mw, and hot precipitator SCA credit allowance. The S03 conditioned precipitator scenario is shown to be economically competitive with fabric filters.  相似文献   

6.
The application of wet electrostatic precipitators is rapidly gaining popularity. The emission regulations are becoming more and more stringent and they are being enforced. The emphasis on removal of fine particles and organic liquid droplets in the submicron range is increasing. In order to meet the required outlet loadings and opacities, the pressure drop that has to be applied across a conventional scrubber has increased exponentially. The wet electrostatic precipitator is emerging as an economic alternative by virtue of its very low power consumption and its potential for removal of submicron particles with efficiencies in the high nineties. Several applications of the wet electrostatic precipitator will be reviewed in this paper.  相似文献   

7.
This paper is directed to those individuals involved in design of electrostatic precipitators. The Deutsch-Anderson model is usually employed by industry for the design of electrostatic precipitators. The so-called process design variable in this approach is the total capture area in the precipitator. Unfortunately, little is available on the equipment design of this unit, i.e., the geometric arrangement of the plates that constitute the capture area and the external dimensions of the physical structure that houses the precipitator components. These are important economic considerations, and it is to this subject that this paper is directed. It is relatively easy to predict equipment costs for “off-the-shelf” electrostatic precipitators; it is more difficult to closely predict the cost for a custom-made unit, which is more often the case encountered in practice. Once the capture area is calculated, the total precipitator cost becomes a strong function of the outer casing and outer accessories of the physical system. In this paper, a model is presented that can help minimize precipitator cost. An illustrative example complements the development of the model.  相似文献   

8.
Improving phosphate removal of sand infiltration system using alkaline fly ash   总被引:17,自引:0,他引:17  
Septic tank effluent is customarily disposed of by soil infiltration. Coarse, sandy soil such as those found in Perth, Western Australia, exhibit low attenuation capabilities for phosphate (PO4(3-)) during effluent infiltration. Amendment of such soil with different amounts of alkaline precipitator and lagoon fly ashes was investigated as a means of reducing phosphorus (P) leakage to ground water. Alkaline precipitator fly ash possessed the highest P sorption capacity in terms of its Langmuir and Freundlich isotherm parameters during initial batch tests. The test materials were repeatedly contacted with fresh PO4(3-) solutions over 90 contacting cycles to gain a better indication of long-term P sorption capability. Again, precipitator fly ash exhibited higher P sorption capacity than lagoon fly ash and Spearwood sand. Column studies assessed the influence of various application rates of alkaline precipitator and lagoon fly ashes on the P removal of septic tank effluent. Septic tank effluent was applied at the rate of 4 cm/day to the column for 12 weeks. Concentrations of P were monitored in the column effluent. All the fly ash columns were more efficient in reducing P migration compared to the sand column. Increased levels of fly ash in the soil columns resulted in increased P attenuation. Lagoon fly ash was inferior to precipitator fly ash for P removal; high application rates of fly ash caused clogging of the infiltration bed apparently due to their lower permeability. It is reasoned that 5-15% precipitator fly ash, and less than 30% lagoon fly ash could be added to coarse sands to produce an infiltration bed, which would result in a better quality effluent than can be obtained with untreated sand alone.  相似文献   

9.
This paper presents the results of work conducted by Research-Cottrell under EPA contract 68-02-2104. The feasibility of electrostatic precipitation at temperatures and pressures varying from ambient condition to 1366°K and 3550 kPa, respectively, has been demonstrated in a laboratory wire-pipe electrode system. Stable corona discharges are obtained at all temperatures subject to appropriate choices of electrode dimension, polarity, and pressure. Current-voltage characteristics are reported for dry air, a simulated combustion gas, and a substitute fuel gas. The effects of temperature, pressure, electrode geometry and polarity on sparkover voltage, corona-starting voltage, and current are evaluated. A precipitator performance model is included to incorporate this data into a high temperature, high pressure precipitator design. This model has been evaluated for an electrostatic (HTHP) precipitator following a pressurized fluidized bed combustor at 1089 K and 920 kPa. It is recommended that prototype HTHP electrostatic precipitators be applied to pilot coal gasifiers and fluidized bed combustors to obtain detailed design data and to verify the accuracy of the performance model under actual operating conditions.  相似文献   

10.
The various design philosophies and methods used in the engineering design of precipitators for fly ash are reviewed and assessed in light of current stringent environmental standards. The basic precipitator size and electrical parameters are individually analyzed and related to particle and flue gas properties. Actual precipitator design practice is illustrated by data for a wide cross section of power plant installations.  相似文献   

11.
Field observations indicating that uniform gas flow at the precipitator outlet may not result in best performance led to a study of how reentrainment and changes in gas distribution within a precipitator affect performance. A computer model developed in the study predicts that an improvement over uniform flow performance is possible by using controlled nonuniform gas distributions at both the inlet and the outlet faces of the precipitator. The model was used to study how changes in precipitator side view geometry affect performance and offers explanations for the reduction in precipitation constants experienced with larger installations.  相似文献   

12.
This study reports the development, construction, and initial testing of a novel vibrational precipitator (VP), patented at Ohio University in 2016, that uses vibrating metal cables with water running over them to capture particulate matter in an exhaust stream. Unlike traditional electrostatic precipitators relying on electric energy to capture particles, this new system uses the concept of vortex shedding to produce vibrations in vertical cables running perpendicular to an exhaust stream. Collisions between particles in the exhaust stream and these vibrating cables cause the particles to land onto a thin film of flowing water around the cables, which carries the particles downward for collection and removal. Initial tests with air containing particulates of 3 micron average particle size show capture efficiencies up to 54% using U.S. Environmental Protection Agency (EPA) Method 5 to measure the particulate concentrations at the upstream and downstream of a VP comprising 8 cells. These results show that this system, without consuming any electric energy, has a significant potential to be a simple and cost-effective way to treat particle-laden exhaust gases.

Implications: In this work, for the first time, a novel precipitator is investigated that captures particles without using any particle charging and (hence) any electricity. The capture mechanism is governed by vibrations of collection electrodes, which are vertical steel cables wetted through continuous flow of water. Without any discharge electrodes, electrode suspension mechanism, and ability of the system to be installed in existing ducts, the novel precipitator becomes a simple chamber housing containing multiple collection electrode cells. The preliminary results show that this new technology can achieve net particulate matter capture efficiency of 54%. This paves a pathway forward for reducing capital and operating cost of air pollution control systems.  相似文献   


13.
An electrostatic precipitator preceded by a wet scrubber was tested at the Reftinskaya Power Station. The unit collects a high resistivity fly ash from the combustion of low sulfur Ekibastuz coal. The operating parameters of the precipitator were measured as well as the mass emissions and the in-situ electrical resistivity of the fly ash. Density, particle size distribution, electrical resistivity, and chemical composition were determined for collected samples of the fly ash. The fly ash was also characterized by x-ray diffraction and scanning electron microscopy. When a centrifugal wet wall scrubber was installed ahead of the electrostatic precipitator, the temperature of the flue gas entering the precipitator was decreased and the moisture content increased. The electrical resistivity of the fly ash was attenuated a decade, but not enough to overcome the adverse effects of back corona in the precipitator. Lowering the flue gas temperature to about 85°C by the addition of a venturi scrubber ahead of the centrifugal scrubber reduced the electrical resistivity of the fly ash another decade and allowed the operation of the precipitator without back corona.  相似文献   

14.
Pollutant abatement systems are widely applied in the coal-fired power sector, and the energy consumption is considered an important part of the auxiliary power. An energy consumption analysis and assessment model of pollutant abatement systems in a power unit was developed based on the dynamic parameters and technology. The energy consumption of pollutant abatement systems in a 1000-MW coal-fired power unit that meets the ultra-low emission limits and the factors of operating parameters, including unit load and inlet concentration of pollutants, on the operating power were analyzed. The results show that the total power consumption of the pollutant abatement systems accounted for 1.27% of the gross power generation during the monitoring period. The wet flue gas desulfurization (WFGD) system consumed 67% of the rate, whereas the selective catalytic reduction (SCR) and electrostatic precipitator (ESP) systems consumed 8.9% and 24.1%, respectively. The power consumption rate of pollutant abatement systems decreased with the increase of unit load and increased with the increase of the inlet concentration of pollutants. The operation adjustment was also an effective method to increase the energy efficiency. For example, the operation adjustment of slurry circulation pumps could promote the energy-saving operation of the WFGD system.

Implications: The application of pollutant abatement technologies increases the internal energy consumption of the power plant, which will lead to an increase of power generation costs. The real-time energy consumption of the different pollutant abatement systems in a typical power unit is analyzed based on the dynamic operating data. Further, the influence of different operating parameters on the operating power of the system and the possible energy-saving potential are analyzed.  相似文献   


15.
The electrical and fluid dynamical characteristics of a barbed plate-to-plate electrostatic precipitator are compared with those of a conventional wire-to-plate precipitator under particle-free conditions. The barbed plate electrode design is based on the concept that a more uniform distribution of current within the flow channel may reduce the scale of the corona-induced electrohydrodynamic flow and thus decrease particle mixing. Current-voltage relationships and hot-film anemometer measurements of turbulence intensities, integral length scales and eddy diflusivities are presented for current densities as high as9mAm−2at gas speeds of 0.5,1.0 and 2.0 m s−1. Visual inspection of the discharge pattern indicates that the scale of the current inhomogeneity is reduced. Flow visualization and measurements of integral length scales confirm that the barbed plate design does reduce the scale of the electrically induced flow. Even though downstream turbulence levels are increased in the planar geometry, gas diffusivities are not substantially reduced. Additional study of the inter-electrode gas flow field and particle collection efficiency is necessary to determine the practical viability of the barbed plate precipitator.  相似文献   

16.
An article in the February 1974 issue of the Journal of the Air Pollution Control Association entitled “Hot” versus “Enlarged” Electrostatic Precipitation of Fly Ash: A Cost Effectiveness Study,1 by D. R. Selzler and W. D. Watson, Jr., arrives at the generalized conclusion that “enlarged” precipitation is likely to be a less costly method of attaining high collection efficiencies for low sulfur fly ash. The basis of this conclusion is a multivariate regression analysis of 37 full-scale cold electrostatic precipitators. Using the predictive ability of the resulting equation, modified to include a 95% probability of attaining design efficiency, together with functions describing capital and operating costs, the authors arrived at the above conclusion.

It is our contention that while the overall approach presented is a good attempt to develop a more systematic method of attacking the problem and arriving at a generalized solution, there are many errors in the development which have resulted in incorrect conclusions. Among the more serious errors in this work is the development and acceptance of a regression model based on cold precipitation performance data which is not compatible with the observed performance of cold precipitators. The use of the same equation for hot precipitator sizing can also be shown to be invalid. Additionally, one of the basic parameters used by the authors to distinguish precipitation performance of coals is not meaningful for hot precipitation and of questionable validity for cold precipitation. And, finally, the authors do not appear to recognize that power input to the precipitator (actually power density) is a constrained function which can hardly ever be increased to levels defined by their “optimum” precipitator sizing.  相似文献   

17.
This paper presents the results of an investigation of the conditioning of fly ash with ammonia in electrostatic pre-cipitators of power plants operated by the Tennessee Valley Authority. It focuses attention primarily on the mechanisms of conditioning encountered under the particular circumstances available for study. No effect of ammonia on the electrical resistivity of fly ash was evident. Instead, the effect of ammonia appeared to be an enhancement pf the space-charge component of the electric field used for charging and precipitating particles of fly ash. In addition, a second effect appeared to be an increase in the cohesiveness of precipitated ash and a reduction in the quantity of ash reentrained during electrode rapping. Data demonstrating the value of ammonia conditioning for lowering the emission pf fly ash during three precipitator studies are presented. Reasons for the ineffectiveness of ammonia conditioning during a fourth precipitator study are discussed. In conclusion, comments are made about the effects to be expected from ammonia conditioning under circumr stances different from those investigated experimentally, particularly with ammonia as a conditioning agent for fly ash from low sulfur western coal.  相似文献   

18.
1998年末 ,鞍山静电技术研究设计院研制的静电除雾器在上海宝山钢铁公司冷轧厂首次应用 ,取得了非常理想的净化效果。本文概述了酸雾对该厂 2 0 30CM0 1酸洗工艺段的危害 ,并对静电除雾器的工作原理、净化过程、设计特点和现场使用等方面作出了系统论述。  相似文献   

19.
This report is a continuation of two prior papers on the selection and application of electrostatic precipitators. The first papers submitted by the TA-5 committee of APCA were primarily concerned with the collection of fly ash from boiler gases. Three other major applications of industrial precipitators include the ferrous, pulp and paper, and cement fields. Other industries utilizing the precipitator but to a lesser degree are: chemical, petroleum, and non-ferrous metals. New application areas in the United States include municipal incinerators and high temperature-high pressure gas cleaning.

While a similarity of theory and equipment is common to all of the above applications, there are sufficient differences both in the processes and types of material collected to make the selection of the Individual precipitator subject to a comprehensive evaluation. In order properly to make this evaluation, it is necessary that a suitable means of communication be established between user and supplier. It is the purpose of this report to recommend ’? terminology, emphasize design factors, and list the information needed by the supplier to make a proper application of his equipment.  相似文献   

20.
电除尘器气流分布与粉尘沉降规律试验研究   总被引:1,自引:1,他引:0  
简要介绍了斜气流技术机理,进行了均匀气流和斜气流状态下的粉尘沉降试验.通过试验数据分析,总结出了电除尘器内部两种气流分布状态下的粉尘沉降规律,指出斜气流技术的应用在提高除尘效率方面具有重大意义,并为斜气流技术的应用提出了一些建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号