首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

The design and the construction of an actual 8.7-m3 pilot/ full-scale biotrickling filter for waste air treatment is described and compared with a previous conceptual scale-up of a laboratory reactor. The reactor construction costs are detailed and show that about one-half of the total reactor costs ($97,000 out of $178,000) was for personnel and engineering time, whereas ~20% was for monitoring and control equipment. A detailed treatment cost analysis demonstrated that, for an empty bed contact time of 90 sec, the overall treatment costs (including capital charges) were as low as $8.7/1000 m3 air in the case where a nonchlorinated volatile organic compound (VOC) was treated, and $14/ 1000 m3 air for chlorinated compounds such as CH2Cl2. Comparison of these costs with conventional air pollution control techniques demonstrates excellent perspectives for more field applications of biotrickling filters. As the specific costs of building and operating biotrickling filter reactors decrease with increasing size of the reactor, the cost benefit of biotrickling filtration is expected to increase for full technical-scale bioreactors.  相似文献   

2.
The design and the construction of an actual 8.7-m3 pilot/full-scale biotrickling filter for waste air treatment is described and compared with a previous conceptual scale-up of a laboratory reactor. The reactor construction costs are detailed and show that about one-half of the total reactor costs ($97,000 out of $178,000) was for personnel and engineering time, whereas approximately 20% was for monitoring and control equipment. A detailed treatment cost analysis demonstrated that, for an empty bed contact time of 90 sec, the overall treatment costs (including capital charges) were as low as $8.7/1000 m3air in the case where a nonchlorinated volatile organic compound (VOC) was treated, and $14/1000 m3air for chlorinated compounds such as CH2Cl2. Comparison of these costs with conventional air pollution control techniques demonstrates excellent perspectives for more field applications of biotrickling filters. As the specific costs of building and operating biotrickling filter reactors decrease with increasing size of the reactor, the cost benefit of biotrickling filtration is expected to increase for full technical-scale bioreactors.  相似文献   

3.
A cost estimating methodology has been applied to an emission point inventory to estimate the capital and operating costs of stack gas cleaning in the manufacturing sector of New York State. The study represents the first major attempt to estimate control costs on a source by source basis for a large region. The various control cost components are presented for each of the twenty manufacturing industry groups and the usefulness of the estimates for an abatement planning model is outlined.

In recent years a number of heroic efforts have been made to estimate the cost of air pollution abatement on a national or regional basis. Unfortunately, these studies have relied almost entirely upon emission factors, cost engineering functions, pilot plant operations, and average or ideal firms, because of the paucity of primary data.1-6

In the estimates of capital and operating costs presented below, an attempt has been made to improve on previous research by making extensive use of primary data. The data were taken from an emission inventory of over 20,000 sources of air contamination in New York State. A cost estimating methodology was applied to engineering parameters of existing control operations on a source by source basis. The results have been aggregated to the two-digit SIC level.  相似文献   

4.
Energy consumption requirements for air pollution control equipment were studied for varying removal efficiency levels at the Tyler Pipe Industries iron foundry in Tyler, Texas, based on plant fuel consumption data, and on field test measurements of cupola carbon monoxide and particulate control equipment. Natural gas consumption for CO removal increased from 0 in 1970 to 25.4% of the plant total in 1976. Operating costs to achieve 85% CO control increased from 0 in 1970 to $1.61/ton metal in 1976. Increasing cupola incinerator temperature from 800° to 1600° F increased CO removal efficiency from 60 to 97%, but also increased natural gas consumption by 150%. Electricity consumption requirements for 95% to 97% particulate control at the foundry increased from 0.1 % of plant total in 1970 to 18.7% in 1976. Electricity consumption for particulate controls increased plant operating costs from 0.004 in 1970 to 1.693 $/ton metal in 1976 as horsepower increased from 20 to 6,272. Cost-benefit methodology is needed to evaluate trade-offs between air pollution control, energy consumption requirements and operating costs of proposed regulations. Total air pollution control system must be considered in enforcing regulations instead of the source to be controlled alone for overall impacts. Need exists for process modifications to enhance energy recovery and development of energy-effective air pollution control equipment.  相似文献   

5.
The body of information presented in this paper is directed to policy makers and administrators involved in the evaluation and assessment of damages caused by oxidant air pollution on human health and welfare and of possible benefits of control.

To provide a comparison of some of the benefits that can be obtained by reducing photochemical oxidant levels, estimated health costs were derived from data relating adverse health effects to hourly oxidant concentrations. Hourly oxidant or ozone concentrations were measured at approximately 400 monitoring stations scattered throughout the U.S. Most of these sites were located in major urban areas or in other areas where high oxidant concentrations prevailed. Estimates of populations at risk and per capita health costs were generated for those areas where oxidant data was available.

During the period 1971-1973, nearly two-thirds of the U.S. population resided in areas where the hourly primary standard for oxidants of 160 µg/m3 was exceeded. The total annual health cost attributable to oxidants was estimated to range from $120 to over $240 million in the U.S.  相似文献   

6.
Radon control systems were Installed and evaluated In fourteen homes In the Spokane River Valley/Rathdrum Prairie and In one home In Vancouver, Washington. Because of local soil conditions, subsurface ventilation (SSV) by pressurlzatlon was always more effective In these houses than SSV by depressurlzatlon In reducing Indoor radon levels to below guidelines. Basement overpressurlzatlon was successfully applied In five houses with airtight basements where practical-sized fans could develop an overpressure of 1 to 3 Pascals. Crawlspace ventilation was more effective than crawlspace Isolation in reducing radon entry from the crawlspace, but had to be used In conjunction with other mitigation techniques, since the houses also had basements. Indoor radon concentrations In two houses with alr-toalr heat exchangers (AAHX) were reduced to levels Inversely dependent on the new total ventilation rates and were lowered even further In one house where the air distribution system was modified. Sealing penetrations In the below-grade surfaces of substructures was relatively Ineffective In controlling radon. Operation of the radon control systems (except for the AAHX’s) made no measureable change in ventilation rates or Indoor concentrations of other measured pollutants. Installation costs by treated floor area ranged from approximately $4/m2 for sealing to $28/m2 for the AAHX’s. Based on the low electric rates for the region, annual operating costs for the active systems were estimated to be approximately $60 to $170.  相似文献   

7.
Total nationwide health costs due to air pollution and cigarette smoking were evaluated by determining the percentages of the total respiratory disease cost for 1970 due to the separate and the synergistic effects of smoking and air pollution. Previous studies known to the authors did not properly account for the well established synergistic effect of smoking and air pollution, and also assumed that the urban factor (ratio of urban incidence to rural incidence) was due primarily or exclusively to air pollution. Recent evidence strongly indicates that air pollution is not the primary cause of the urban factor, although it does make a contribution. Taking a minimum of 10% and a maximum of 50% of the urban factor to be due to air pollution, the total 1970 nationwide health cost due to air pollution was found to be between $62 million and $311 million, and the nationwide health cost due to cigarette smoking was found to be $4.23 billion.  相似文献   

8.
Travel on unpaved public roads is the single largest anthropogenic source of emissions of airborne particles in the U.S. The average impact of this source on average annual mean total suspended particulate (TSP) concentrations varies from 0.05 μg/m3 (Alaska) to 11 μg/m3 (Pennsylvania). When compared by contributions to the variance in state to state TSP levels, their impact is as great as the impact of emissions from all conventional sources. Common emission control methods include paving, oiling, speed reduction, watering, and application of calcium chloride. Total annual emissions are, in most cases, most economically reduced by either speed control or paving, with expected average control costs of less than $0.50/lb of emissions reductions. For most roads with average daily traffic flows above 100 vehicles per day, paving is shown to control emissions at average costs of less than $0.05/lb. In some situations, the costs of paving are more than offset by reductions in maintenance costs. Thus it would appear that, even accounting for the order of magnitude lower impact on statewide average concentration per ton of particles emitted from open sources, control of dust emissions from unpaved roads offers an economical means for reducing ambient TSP levels.  相似文献   

9.
Valuation of health effects of air pollution is becoming a critical component of the performance of cost–benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004–2008 was 272, 297, 310, 323, 298 million US$ (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM10 emission from road transport can also be estimated as 106 US $/number and 3584 US $ t?1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.  相似文献   

10.
Results from a detailed analysis of sulfur dioxide (SO2) reductions achievable through “deep” physical coal cleaning (PCC) at 20 coal-fired power plants in the Ohio-Indiana-Illinois region are presented here. These plants all have capacities larger than 500 MWe, are currently without any flue gas desulfurization (FGD) systems, and burn coal of greater than l%sulfur content (in 1980). Their aggregate emissions of 2.4 million tons of SO2 per year represents 55% of the SO2 inventory for these states. The principal coal supplies for each power plant were identified and characterized as to coal seam and county of origin, so that published coal-washability data could be matched to each supplier. The SO2 reductions that would result from deep cleaning each coal (Level 4) were calculated using an Argonne computer model that assumes a weight recovery of 80%. Percentage reductions in sulfur content ranged from zero to 52%, with a mean value of 29%, and costs ranged from a low of $364/ton SO2 removed to over $2000/ton SO2 removed. Because coal suppliers to these power plants employ some voluntary coal cleaning, the anticipated emissions reduction from current levels should be near 20%. Costs then were estimated for FGD systems designed to remove the same amount of SO2 as was achieved by PCC through the use of partial scrubbing with bypass of the remaining flue gas. On this basis, PCC was more cost-effective than FGD for about 50% of the plants studied and had comparable costs for another 25% of the plants. Possible governmental actions to either encourage or mandate coal cleaning were identified and evaluated  相似文献   

11.
ABSTRACT

The benefits and costs of past nitrogen dioxide (NO2) control policies were calculated for Tokyo, Japan, using environmental, economic, political, demographic, and medical data from 1973 to 1994. The benefits of NO2 control were estimated as medical expenses and lost work time due to hypothetical no-control air concentrations of NO2. Direct costs were calculated as annualized capital expenditures and 1 year's operating costs for regulated industries plus governmental agency expenses. The major findings were as follows:

(1) Using Tokyo's average medical cost of pollution-related illness, the best net estimate of the avoided medical costs due to incidence of phlegm and sputum in adults was 730 billion yen ($6.08 billion; 1 U.S. dollar = 120 yen).

(2) The best net estimate of the avoided medical costs due to incidence of lower respiratory illness in children was 93 billion yen ($775 million).

(3) Using Tokyo's average duration of pollution-related illness and average wages, the best net estimate of the avoided costs of lost wages in workers was 760 billion yen ($6.33 billion).

(4) The best net estimate of the avoided costs of lost wages in mothers caring for their sick children was 100 billion yen ($833 million).

(5) Using Tokyo-specific data, the best net costs were estimated as 280 billion yen ($2.33 billion).

(6) Using human health and productivity benefits, and annualized capital cost and operating cost estimates, the best net benefits-to-costs ratio was 6:1 (upper limit 44:1; lower limit 0.3:1). Benefit calculations were sensitive to assumptions of mobile source emissions and certain health impacts that were not included. Cost calculations were highly dependent on assumptions of flue gas volume and fuel use. For comparative purposes, we identified other studies for air pollution-related illness. Assumptions that formed the basis for most of the inputs in the present study, such as duration of illness, medical treatment costs, per person illness in children, and lost wages for working mothers, were similar to those recommended in the literature. Lost wages in sick workers and per capita illness incidence in adults were higher than numbers reported elsewhere. Further advances in cost-benefit analysis (CBA) procedures to evaluate the economic effectiveness of NO2 controls in Tokyo are recommended to estimate impacts and values for additional human health benefits, ecosystem health and productivity effects, and nonliving system effects, as well as benefits of ancillary reductions in other pollutants. The present study suggests that Tokyo's past NO2 control policies in total were economically quite effective.  相似文献   

12.
A general procedure has been described that can be followed for estimating the cost of reducing air pollution emissions within a metropolitan region. The six step procedure examines emission inventories, regional trends, control trends, alternate control schemes, control costs, and optimum cost-effectiveness. The procedure is illustrated for one emission source in the Delaware Valley. By application of “feasible controls,” automobile emissions were shown to be reduced from 4.5 billion pounds per year in the Region during 1968 to 1.5 billion pounds in the year 2000. Annual control costs during the same period will increase from $30 million to over $300 million per year. This represents a cost increase from $15 per registered vehicle in 1968 to about $58 per vehicle per year in 2000. A method was illustrated for determining minimum cost to achieve any desired degree of emission reduction where alternate feasible control schemes are available. This method is especially useful where the allocation of scarce resources is involved. The general procedure is applicable to any number of pollutants and emission sources, and may be useful for calculations in any metropolitan area. The objectives of the present study are to apply this method to other sources within the Delaware Valley and to determine total regional costs for various levels of emission reduction. As one example of a practical application for this type of analysis, the economic impact of regulatory schemes can be evaluated on a cost-effectiveness basis  相似文献   

13.
The paving of gravel roads with an average daily traffic (ADT) over 15 is a least cost method for reducing suspended particulate In the air in Seattle. It is also a good business investment when the ADT exceeds 100. Clean roads, gutters, and parking lots may reduce or eliminate Seattle’s most serious environmental constraint on economic development. In a study done in Seattle’s Duwamish Valley the impact of road dust on air quality was measured by obtaining dust emission factors for vehicles traveling at 10, 20, and 30 mph on gravel as well as dusty paved roads. A University of Washington Mark II Cascade Impactor was mounted on a trailer and towed behind a car to determine the concentration and size distribution of this dust. It was found that each vehicle mile at 20 mph on unpaved roads contributed 7.0 Ib of dust to the air, 1.9 Ib consisting of particles smaller than 10 microns in diameter and 0.24 Ib below 2 microns. Three to eight percent by weight of this respirable dust was free silica, which is potentially toxic. The quantity of dust generated varies as an exponent of the speed. The concentrations of dust found in the air near a dry gravel road with an ADT of 250 reached 584 μg/m3 for an 8 hr work day. A 24 hr suspended particulate reading of 463 μg/m3 total and 3.83 μg/m3 free silica was found beside a dusty paved road with an ADT of 18,000. Nineteen miles of gravel roads and 110 miles of dusty paved roads contributed 2700 tons/year of particulate, of which 700 tons were below 10 microns. Paving or oiling such roads will produce benefits of $3,881,000 yearly in household cleaning, health care, sewer, vehicle operation, and road maintenance costs as well as an increase in property values. Clean roads can lower the cost of clean air in Seattle.  相似文献   

14.
Whereas most estimates of material damage are based on industrial surveys, the estimates produced in this study were derived from material damage experiments and ambient air quality data. Air quality data on SO2 were obtained from 200 or more monitoring sites primarily located in heavily populated or polluted areas. Material threshold damage function data were then compared with SO2 levels, and an estimate of losses, as reflected in increased maintenance and replacement costs, was determined. Estimates of the total stock of various materials in use were derived from census and industry data and allocated geographically according to population. A substantial decrease in the ambient SO2 levels, particularly in larger urban areas, has occurred during the past five years. From 1968 to 1972, the estimated amount of material damage from SO2 in the U. S. decreased from $900 million/yr to less than $100 million. During this period, the estimated percentage of man made materials exposed to SO2 levels exceeding the proposed secondary annual average standard (60 μg/m3) and primary annual average standard (80 μg/m3) in the U. S. fell respectively, from 20% to less than 5% and from more than 10% to less than 1%. Most of the present loss is attributed to corrosion damage of metallic surfaces that are normally exposed to the ambient environment.  相似文献   

15.
Plant injury caused by air pollutants is a well recognized effect causing economic losses totalling millions of dollars. Farm crops, forest species, and ornamentals are all affected depending upon kind of plant and degree of exposure. Benedict1 estimated the minimum annual agricultural losses in the U. S. to be $132 million in 1969-1971. Millecan2 estimated California crop losses caused by air pollutants to be at least $25 million in 1972. Recent studies by Brewer3 in which conventional greenhouses were placed in the field over cotton gave results showing yields were reduced by 10-30% in the San Joaquin valley where significant levels of photochemical smog occur. However, these estimates of losses represent little more than educated guesses because the procedures available for obtaining the information are so imprecise.  相似文献   

16.
The treatment of soil contaminated with organics and inorganics is becoming a major industry in the United States and Europe. The soil cleanup bill for the United States could run as high as $200 to $300 billion over the next 30 to 40 years. European soil cleanup costs could run as high as $130 billion.1

The types of sites in the United States that will require soil treatment can be broken down into the following categories: ? CERCLA (Superfund) Actions

? RCRA Corrective Actions

? RCRA Closures

? Underground Storage Tanks

? Real Estate Transfers

? Spill Clean-ups.

The cleanup of sites in each of these categories, with the exception of the Real Estate Transfer category, is being driven by different sets of Federal regulations. Real Estate Transfer type regulations were first instituted in New Jersey and have now been promulgated in a number of other states.

The eventual cleanup cost for the Superfund sites will be close to $200 billion. Estimated costs for the industrial sector Superfund are $25 to $50 billion and the estimated cost for the Department of Energy sites is over $150 billion.2 An early RCRA Corrective Action cleanup estimate is $25 billion.3 This estimate may well be low, however, since the permitting, cleanup and delisting criteria are still not clearly defined. The EPA’s RCRA Corrective Action cost estimate is $7.4 billion. However, the Office of Management and Budget feels that this estimate is low.4

The potential magnitude of the cleanup costs has resulted in the development and implementation of many technologies for the decontamination of soils. Of the available remedial technologies, thermal treatment has perhaps had the most field testing. The purpose of this paper is to focus on the full scale site remediations which have been or are being conducted using thermal processing equipment. Projects which have been completed, are on-going, or have been contracted for, through January of 1990 are described.  相似文献   

17.
Abstract

Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photo-catalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr?1, and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and form-aldehyde found in this study ranged from 0.381 to 1.01 hr?1 under different total air change rates, from 0.34 to 0.433 hr?1 under different RH, and from 0.381 to 0.433 hr?1 for different photocatalytic filters.  相似文献   

18.
This paper describes a comprehensive set of economic models developed to assess the air pollution control costs of alternative systems for generating electricity from coal. Models of individual system components were formulated based on engineering and statistical analyses of other detailed models and data reported in the literature for currently available technologies. The air pollution control options modeled include 4 levels of physical coal cleaning, 3 types of dry fly ash collectors, a wet limestone FGD system, and 2 options for solid waste disposal. In addition, the cost of a power plant with no air pollution controls was modeled to determine the total system cost, including energy needed to operate environmental control systems. The principal criteria guiding the development of these models were that they be (1) computationally simple and economical to use, with a minimum of detailed data requirements, (2) sensitive to variations in pollutant emission regulations, coal characteristics, and key plant design parameters, and (3) systematic, based on a specified amount of power production and the same constant dollars. Extensive sensitivity analyses and case studies performed with these models indicate excellent agreement with the results of other studies and models applicable only to individual environmental control options. Applications of these models are discussed and illustrative results presented.  相似文献   

19.
The benefits and costs of past nitrogen dioxide (NO2) control policies were calculated for Tokyo, Japan, using environmental, economic, political, demographic, and medical data from 1973 to 1994. The benefits of NO2 control were estimated as medical expenses and lost work time due to hypothetical no-control air concentrations of NO2. Direct costs were calculated as annualized capital expenditures and 1 year's operating costs for regulated industries plus governmental agency expenses. The major findings were as follows: (1) Using Tokyo's average medical cost of pollution-related illness, the best net estimate of the avoided medical costs due to incidence of phlegm and sputum in adults was 730 billion yen ($6.08 billion; 1 U.S. dollar = 120 yen). (2) The best net estimate of the avoided medical costs due to incidence of lower respiratory illness in children was 93 billion yen ($775 million). (3) Using Tokyo's average duration of pollution-related illness and average wages, the best net estimate of the avoided costs of lost wages in workers was 760 billion yen ($6.33 billion). (4) The best net estimate of the avoided costs of lost wages in mothers caring for their sick children was 100 billion yen ($833 million). (5) Using Tokyo-specific data, the best net costs were estimated as 280 billion yen ($2.33 billion). (6) Using human health and productivity benefits, and annualized capital cost and operating cost estimates, the best net benefits-to-costs ratio was 6:1 (upper limit 44:1; lower limit 0.3:1). Benefit calculations were sensitive to assumptions of mobile source emissions and certain health impacts that were not included. Cost calculations were highly dependent on assumptions of flue gas volume and fuel use. For comparative purposes, we identified other studies for air pollution-related illness. Assumptions that formed the basis for most of the inputs in the present study, such as duration of illness, medical treatment costs, per person illness in children, and lost wages for working mothers, were similar to those recommended in the literature. Lost wages in sick workers and per capita illness incidence in adults were higher than numbers reported elsewhere. Further advances in cost-benefit analysis (CBA) procedures to evaluate the economic effectiveness of NO2 controls in Tokyo are recommended to estimate impacts and values for additional human health benefits, ecosystem health and productivity effects, and nonliving system effects, as well as benefits of ancillary reductions in other pollutants. The present study suggests that Tokyo's past NO2 control policies in total were economically quite effective.  相似文献   

20.
污水再生处理微滤-反渗透工艺经济分析   总被引:2,自引:0,他引:2  
近年来,微滤-反渗透(MF-RO)工艺在污水再生处理领域中的应用越来越受到关注,但其设备投资和运行成本较高,需要建立科学、高效的运行管理机制和投入产出机制,以提高其经济效益。系统研究了北京市某再生水厂微滤-反渗透(MF-RO)工艺的设备投资及运行费用等情况。再生水成本主要由设备折旧费和运行成本组成,其中运行成本所占比例较高,而在运行成本中所占比例最高的是膜更换费、电费和药剂费。目前该厂再生水销水量约为7 000 m3/d,运行负荷率仅为33.33%,导致再生水成本较高,总成本约达5.29元/m3,其中设备折旧费为0.83元/m3,运行成本约为4.46元/m3。因此提高运行负荷率,即提高销水量,是降低再生水成本的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号