首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The dispersion of hot plumes emitted from a smelter complex located In the Columbia River Valley, British Columbia, was evaluated under stable and neutral conditions during two mornings In spring. Spatial measurements of SO2 and temperature within the plume were obtained by immersion probing using fast response helicopter and automobile mounted Instrumentation. In addition, meteorological measurements of vertical wind and temperature profiles at, and downwind from, the smelter were obtained from minisonde balloon releases. With weak down-valley winds, it was found that the plume axis elevations were generally lower during both stable and neutral conditions than would be predicted by Briggs plume-rise formulae. In contrast, plume dispersion, although confined in the horizontal by the steep valley walls during both stability regimes, was significantly enhanced by exceptionally good lateral mixing, particularly close to the source.  相似文献   

2.
This paper describes remote monitoring of air pollutant emissions by a mobile lidar (light detection and ranging)/ sodar (sound detection and ranging) system. First, measurements are carried out in the flue gas plume of a public power plant. The investigations focus mainly on quantifying SO2 emissions, but the uncertainties of such measurements are also emphasized. Furthermore, an example providing valuable data sets for the development and validation of plume dispersion models is outlined with measurements of the dilution of SO2 along the plume axis. Series of repeated determinations of SO2 emissions show a large variation in the obtained flux values, with moderate margins of error. Incomplete recording of the plume within the individual lidar scans, induced by strong looping movements of the flue gas plume, predominantly causes the variations of flux values. Therefore, the highest flux values determined are considered to be the most exact. This is verified by a comparison of measured fluxes with in situ measurements made by the plant operators. The results further indicate that lidar measurements illustrate the location and dimension of aerosol plumes better than the location and dimension of the plumes of gaseous compounds. The wind direction affecting the plume at any moment can be determined faster by lidar than by sodar because the latter requires much longer time intervals of signal averaging. Measurements show higher concentrations of SO2 compared with results from a Gaussian plume model for periods of less than 5 min after dispersion. The findings emphasize the suitability of remote sensing for detecting emissions and for investigating the propagation and dilution of air pollutant plumes.  相似文献   

3.
Mobile lidar observations were made downwind of TVA’s Cumberland (Tennessee) power plant as part of the STATE (Sulfur Transport and Transformation in the Environment) program. Vertical profiles of aerosol backscatter have been processed and displayed to show plume structure as an intensity-modulated TV presentation. Available meteorological data, especially the pilot balloon and radiosonde measurements collected during the STATE experiment, have been used to aid in the interpretation of the lidar display. The data show: ? Well defined nighttime plumes, which often tilt or display a layered structure in the shape of a “>”.

? Late morning convective breakup of the plume.

? Well mixed convective plumes during the day.

? Reformation of the layered nighttime plume during the late afternoon.

It appears that the nighttime plume behavior can be related qualitatively to the strong directional shear of the wind with height that often accompanies the stable nighttime atmosphere. The nighttime plume shapes frequently differ markedly from the oval shape one expects of a gaussian plume. Daytime plumes are in better conformance to the expected shape except when constricted by the surface or the top of the mixing layer  相似文献   

4.
In this work an experimental study of mixing of two identical plumes, carried out in a turbulent neutral boundary layer generated in a wind tunnel, is presented. Measurements have been performed with fast flame ionisation detectors (FFIDs) and a two-component Laser-Doppler Anemometer system. Results allow the study of both the average and the fluctuating concentration field, including the turbulent vertical and longitudinal mass fluxes, in single plumes and during the interaction of two identical plumes. This information gives insight into the details of the mixing phase of the two plumes. Results of trajectories and additional rise (due to plume interactions) have been compared with previous measurements carried out in laminar cross-flows, showing similar behaviour. Concentration distributions in plume cross-sections in turbulent cross-flows differ from those measured in laminar cross-flows. Average vertical and longitudinal velocity measurements into the plume core show the strength of the shielding effect of the upwind plume and some details of interaction between the counter-rotating vortex pairs (CVPs). For large values of the alignment angle φ, between the line joining the stacks and the cross-flow, an average negative vertical velocity is measured in the middle of the plume even if its centre of mass is rising. This downward velocity is induced by the slow interaction of the CVPs and generates a vertical stretching of the plume and negative rise enhancement. Vertical turbulent fluxes change sign on the plume centreline and are of opposite sign with respect to the longitudinal turbulent fluxes. Results indicate a good linearity between vertical turbulent fluxes and concentration gradients, with different proportionality for the top and bottom parts of the plume (especially in the near field) indicating that dispersion could be described by a gradient-transfer model.  相似文献   

5.
ABSTRACT

The rate of formation of secondary particulate matter (PM) in power plant plumes varies as the plume material mixes with the background air. Consequently, the rate of oxidation of sulfur dioxide (SO2) and nitrogen dioxide (NO2) to sulfate and nitric acid, respectively, can be very different in plumes and in the background air (i.e., air outside the plume). In addition, the formation of sulfate and nitric acid in a power plant plume is a strong function of the chemical composition of the background air and the prevailing meteorological conditions.

We describe the use of a reactive plume model, the Reactive and Optics Model of Emissions, to simulate sulfate and nitrate formation in a power plant plume for a variety of background conditions. We show that SO2 and NO2 oxidation rates are maximum in the background air for volatile organic compound (VOC)-limited airsheds but are maximum at some downwind distance in the plume when the background air is nitrogen oxide (NOx)-limited. Our analysis also shows that it is essential to obtain measurements of background concentrations of ozone, aldehydes, peroxyacetyl nitrate, and other VOCs to properly describe plume chemistry.  相似文献   

6.
ABSTRACT

The rate of conversion of SO2 to SO4 2- was re-estimated from measurements made in the plume of the Cumberland power plant, located on the Cumberland River in north-central Tennessee, after installation of flue gas desulfurization (FGD) scrubbers for SO2 removal in 1994. The ratio of SO2 to NOy emissions into the plume has been reduced to ~0.1, compared with a prescrubber value of ~2. To determine whether the SO2 emissions reduction has correspondingly reduced plume-generated particulate SO4 2- production, we have compared the rates of conversion before and after scrubber installation. The prescrubber estimates were developed from measurements made during the Tennessee Plume Study conducted in the late 1970s. The post-scrubber estimates are based upon two series of research flights in the summers of 1998 and 1999. During two of these flights, the Cumberland plume did not mix with adjacent power plant plumes, enabling rate constants for conversion to be estimated from samples taken in the plume at three downwind distances. Dry deposition losses and the fact the fact that SO2 is no longer in large excess compared with SO4 2- have been taken into account, and an upper limit for the conversion rate constant was re-estimated based on plume excess aerosol volume. The estimated upper limit values are 0.069 hr-1 and 0.034 hr-1 for the 1998 and 1999 data, respectively. The 1999 rate is comparable with earlier values for nonscrubbed plumes, and although the 1998 upper limit value is higher than expected, these estimates do not provide strong evidence for deviation from a linear relationship between SO2 emissions and SO4 2- formation.  相似文献   

7.
Vertical profiling with point samplers is an accepted method for quantifying the fluxes of PM10 from non-point fugitive dust sources, but is limited by uncertainty in estimates of the actual height of the dust plume, especially for plumes that exceed the highest sampling height. Agricultural land preparation operations in the San Joaquin Valley were monitored using upwind–downwind vertical PM10 profiles and data collected during the first successful experiment to include light detection and ranging (lidar), in 1998, were analyzed to provide modeling criteria for the 1996 and 1997 data. A series of six comprehensive PM10 tests with concurrent lidar data was examined to: (a) develop a framework for analyzing upwind–downwind point PM10 concentration profiles of land preparation operations (disking, listing, root cutting, and ripping) and (b) identify conditions under which the field sampling strategies affect the reproducibility of PM10 concentration measurements. Lidar data were used to verify that the plume heights and shapes extrapolated from the point sampler vertical profiles adequately described the plumes. The shortcomings of the vertical profiling technique and lidar methods are discussed in the light of developing efficient robust methods for accurate PM10 emissions quantification from complex non-point sources.  相似文献   

8.
The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = ?ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1–1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites. Implications: This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites.  相似文献   

9.
Methods have been developed for calculating the Ringelmann number, opacity, and other optical characteristics of stack plumes from information on particulate properties, concentrations, and system geometry. Such calculations can be used in selecting clean-up equipment to improve stack appearance required to meet Ringelmann number and opacity pollution regulations. Methods were developed for white plumes caused by water drops or crystalline material and for black plumes containing carbon emissions. The Mie theory of light scattering was utilized to calculate plume optical properties which were related to Ringelmann number through psycophysically significant correlations. A computer program was written to perform the Mie theory and related calculations. Graphical methods were developed for plumes with log-probability size distributions composed of water drops, dusts with refractive index of 1.50 or carbon type emissions of refractive index 1.59-0.66i. Agreement of Ringelmann numbers predicted by these techniques and those observed for large stacks is excellent.  相似文献   

10.
In this paper, an experimental study of the rise and development of a single buoyant plume and a pair of in-line buoyant plumes is presented. The investigations were carried out at small scale in a water filled towing tank using both quantitative flow visualisation and local concentration measurements. The measured plume trajectories for a single plume were compared with the Briggs plume rise equation and predictions from a numerical integral model. Plume trajectories were studied for twin in-line plumes, with particular attention to changes in the plume trajectory, especially any additional rise that resulted from the interaction between the two plumes. Concentration field distributions in cross-sections through both single and interacting twin plumes were obtained from the local concentration measurement system. These showed how the interaction affected the plume structure, notably the double vortex system that occurs in a fully developed plume.  相似文献   

11.
Equations are derived from the Gaussian plume mode! and prescribe the critical downwind distance, wind speed, and plume rise values that result in maximum ground-level concentrations (MGLC) under downwash conditions. The derivations apply to bent-over plumes and encompass the Schulman-Scire and Huber-Snyder building downwash treatments.  相似文献   

12.
The Virtual Aquifer approach is used in this study to assess the uncertainty involved in the estimation of contaminant plume lengths in heterogeneous aquifers. Contaminant plumes in heterogeneous two-dimensional conductivity fields and subject to first order and Michaelis-Menten (MM) degradation kinetics are investigated by the center line method. First order degradation rates and plume lengths are estimated from point information obtained along the plume center line. Results from a Monte-Carlo investigation show that the estimated rate constant is highly uncertain and biased towards overly high values. Uncertainty and bias amplify with increasing heterogeneity up to maximum values of one order of magnitude. Calculated plume lengths reflect this uncertainty and bias. On average, plume lengths are estimated to about 50% of the true plume length. When plumes subject to MM degradation kinetics are investigated by using a first order rate law, an additional error is introduced and uncertainty as well as bias increase, causing plume length estimates to be less than 40% of the true length. For plumes with MM degradation kinetics, therefore, a regression approach is used which allows the determination of the MM parameters from center line data. Rate parameters are overestimated by a factor of two on average, while plume length estimates are about 80% of the true length. Plume lengths calculated using the MM parameters are thus closer to the correct length, as compared to the first order approximation. This approach is therefore recommended if field data collected along the center line of a plume give evidence of MM kinetics.  相似文献   

13.
Data from 137 sets of plume observations, comprising nearly 1 500 data points, are correlated with two simple formulae. These formulae, one for the buoyancy-dominated rise region and the other for the stratification-dominated levelled-off region of a plume, represent an approximate form of the entrainment theory of Hoult, et al. (1968)1 for the case of uniform atmospheric stratification and zero wind shear. The observations, which are those of the Tennessee Valley Authority and of Bringfelt (1968),6 were made of plumes whose source strengths ranged from 0.4 to 111 Mw and which were emitted from stacks of heights between 21 and 183 m. The two formulae are found to correlate the data equally well over all values of the stack exit and meteorological parameters, provided only that the bulk mean velocity of the stack gases exceeds the mean wind speed by at least 20%. The ratio of observed to calculated plume rise is found to be distributed log normally about the mean value.

The median rise at large distances downstream was found to differ insignificantly from that given by the effective stack height formula recommended recently11 for large buoyant plumes. Based upon the correlation, two formulae are recommended for computing median plume rise at all distances downstream of the stack. The formulae include an estimate of the expected uncertainty in the predicted rise.  相似文献   

14.
The purpose of this paper is to describe ozone production in forest slash burn plumes. Plumes from controlled fires in the state of Washington were monitored using an instrumented aircraft. Ozone, oxides of nitrogen, condensation nuclei, and visual range (nephelometer) were measured continuously on board the plane. Airborne grab samples were collected for detailed hydrocarbon analysis.

The slash burn plumes were found to contain significant quantities of ozone. A buildup of 40–50 ppb above the ambient background ozone concentrations was not unusual. Hydrocarbon analyses revealed the presence of many photochemically reactive olefins in the plume. Hydrocarbon/NO x ratios were favorable for photochemical oxidant production.  相似文献   

15.
A method for calculating the dispersion of plumes in the atmospheric boundary layer is presented. The method is easy to use on a routine basis. The inputs to the method are fundamental meteorological parameters, which act as distinct scaling parameters for the turbulence. The atmospheric boundary layer is divided into a number of regimes. For each scaling regime we suggest models for the dispersion in the vertical direction. The models directly give the crosswind-integrated concentrations at the ground, xy, for nonbuoyant releases from a continuous point source. Generally the vertical concentration profile is proposed to be other than Gaussian. The lateral concentration profile is always assumed to be Gaussian, and models for determining the lateral spread σy are proposed. The method is limited to horizontally homogeneous conditions and travel distances less than 10km. The method is evaluated against independent tracer experiments over land. The overall agreement between measurements and predictions is very good and better than that found with the traditional Gaussian plume model.  相似文献   

16.
Visual Determination of the Opacity of Emissions from Stationary Sources (Method 9) is a reference method established by U.S. Environmental Protection Agency (EPA) to quantify plume opacity. However, Method 9 relies on observations from humans, which introduces subjectivity. In addition, it is expensive to teach and certify personnel to evaluate plume opacity on a semiannual basis. In this study, field tests were completed during a "smoke school" and a 4-month monitoring program of plumes emitted from stationary sources with a Method 9 qualified observer to evaluate the use of digital photography and two computer algorithms as an alternative to Method 9. This Digital Optical Method (DOM) improves objectivity, costs less to implement than Method 9, and provides archival photographic records of the plumes. Results from "smoke school" tests indicate that DOM passed six of eight tests when the sun was located in the 140 degrees sector behind one of the three cameras, with the individual opacity errors of 15% or less and average opacity errors of 7.5% or less. DOM also passed seven of the eight tests when the sun was located in the 216 degrees sector behind another camera. However, DOM passed only one of the eight tests when the sun was located in the 116 degrees sector in front of the third camera. Certification to read plume opacity by a "smoke reader" for 6 months requires that the "smoke reader" pass one of the smoke school tests during smoke school. The average opacity errors and percentage of observations with individual opacity errors above 15% for the results obtained with DOM were lower than those obtained by the smoke school trainees with the sun was located behind the camera, whereas they were higher than the smoke school trainee results with the sun located in front of the camera. In addition, the difference between plume opacity values obtained by DOM and a Method 9 qualified observer, as measured in the field for two industrial sources, were 2.2%. These encouraging results demonstrate that DOM is able to meet Method 9 requirements under a wide variety of field conditions and, therefore, has potential to be used as an alternative to Method 9.  相似文献   

17.
The reactive and optics model of emissions (ROME) is a reactive plume visibility model that simulates the potential atmospheric impacts of stack emissions. We present here an evaluation of the ability of ROME to simulate several plume physical and chemical variables, using an experimental data base that consists of a total of 40 case studies from four field programs. The evaluation variables include plume height, horizontal width, NOx and SO2 maximum concentrations, NO2/NOx concentration ratio at the plume centerline, and plume-to-sky radiance ratios. Three algorithms used to simulate plume dispersion in ROME were compared: (1) the empirical Pasquill–Gifford–Turner (PGT) scheme, (2) a first-order closure (FOC) algorithm and (3) a second-order closure (SOC) algorithm that simulates the instantaneous plume dimensions.The plume height results show a correlation of 0.82 between simulated and measured values and a gross error that is 13% of the mean measured value. For plume horizontal dispersion, the second-order closure algorithm produces a moderate correlation (0.54) and a small bias (5% of the mean measured value) in comparison with the field data. Although the PGT scheme also demonstrates moderate correlation with the measurements, it produces a negative bias by significantly underestimating plume horizontal dispersion. The first-order closure algorithm overestimates plume width and shows the least correlation (with the measurements) of the three dispersion algorithms.For the NYSEG data set where coordinated measurements of stack emissions, meteorology at plume height and plume characteristics were available, the SOC algorithm provides better correlations for NOx concentrations, NO2/NOx ratios and plume visibility than the FOC and PGT algorithms. For plume visibility, the SOC algorithm shows a correlation of 0.96 at 405 nm, the wavelength where the plume was visible, and it simulates no visible plume at the other wavelengths (550 and 700 nm).A comparison of ROME simulations with those of the plume visibility model PLUVUE II shows that ROME, with the SOC algorithm, performs better for all variables.  相似文献   

18.
A reactive plume model that treats secondary aerosol formation is used to investigate the major physical and chemical processes that affect the rate of sulfate and nitrate aerosol formation in power plant plumes. The reactive plume model is evaluated with experimental data collected in three power plant plumes, and model performance is shown to be quite satisfactory. One of these case studies is used to perform singleparameter and multi-parameter analyses of the sensitivity of sulfate and nitrate aerosol concentrations to various meteorological, air quality and chemical kinetic parameters. The results suggest that sulfate aerosol concentrations are most sensitive to relative humidity and temperature at high relative humidity, whereas nitrate aerosol concentrations are most sensitive to temperature, particularly at low relative humidity. The importance of the NOx/reactive hydrocarbon chemistry to sulfate and nitrate aerosol formation is examined.  相似文献   

19.
Measurements of the vertical entrainment velocity into two-dimensional dense gas plumes over fully rough surfaces were carried out as part of a co-operative research programme with wind tunnel facilities in the USA. This paper presents results obtained for neutral boundary layer conditions in the EnFlo wind tunnel at the University of Surrey; a companion paper treats the stable boundary layer case. Entrainment velocities, WE, were deduced from the streamwise development of the concentration field, non-dimensionalised with respect to the friction velocity in the undisturbed flow, u*, and correlated with the plume Richardson number, Ri*. Results for Richardson numbers in the range Ri*<15 were found to be well fitted by the empirical expression: WE/u*=0.65/(1+0.2Ri*). Flow visualisation studies showed layered plume structures with a sharp upper interface at higher Richardson numbers and in this regime turbulent motion below the interface became progressively more intermittent as Ri* increased. Measured turbulence levels collapsed within such high Richardson number plumes and flow and dispersion were significantly affected by molecular processes. Up-welling above the source was observed when the emission speed exceeded the approach flow friction velocity, though there was no clear evidence that this affected plume behaviour away from the immediate vicinity of the source.  相似文献   

20.
A unique field experiment has been undertaken at the CFB Borden research site to investigate the development of dissolved chlorinated solvent plumes from a residual dense non-aqueous phase liquid (DNAPL) source. The "emplaced-source" tracer test methodology involved a controlled emplacement of a block-shaped source of sand containing chlorinated solvents below the water table. The gradual dissolution of this residual DNAPL solvent source under natural aquifer conditions caused dissolved solvent plumes of trichloromethane (TCM), trichloroethene (TCE) and perchloroethene (PCE) to continuously develop down gradient. Source dissolution and 3-D plume development were successfully monitored via 173 multilevel samplers over a 475-day tracer test period prior to site remediation research being initiated. Detailed groundwater level and hydraulic conductivity data were collected. Development of plumes with concentrations spanning 1-700,000 micrograms/1 is described and key processes controlling their migration identified. Plumes were observed to be narrow due to the weakness of transverse dispersion processes and long due to advection and significant longitudinal dispersion, very limited sorptive retardation and negligible, if any, attenuation due to biodegradation or abiotic reaction. TCM was shown to be essentially conservative, TCE very nearly conservative and PCE, consistent with its greater hydrophobicity, more retarded yet having a greater mobility than observed in previous Borden field tests. The absence of biodegradation was ascribed to the prevailing aerobic conditions and lack of any additional biodegradable carbon substrates. The transient groundwater flow regime caused significant transverse lateral plume movement, plume asymmetry and was likely responsible for most of the, albeit limited, transverse horizontal plume spreading. In agreement with the widespread incidence of extensive TCE and PCE plumes throughout the industrialized world, the experiment indicates such solvent plumes are likely to be highly mobile and persistent, at least in aquifers that are aerobic and have low sorption potential (low foc content).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号