首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fine participates are the subject of increasing concern as one of the major air pollutants. They contribute to smog formation. They are a health hazard because they bypass the respiratory filters and penetrate deep into the lungs, and because they may act synergistically with other pollutants. The sources of submicron particle size pollutants are discussed.  相似文献   

2.
Evaluation of emerging diesel particulate emissions control technology will require analytical procedures capable of continuous or “real-time” measurement of transient organic and elemental carbon emissions. Procedures based on the flame ionlzation properties of organic carbon and the opacity or light extinction properties of elemental carbon are described, and applied for measurement of particulate emissions from diesel engines. The Instrumentation provided adequate sensitivity and time resolution for observation of the transient emissions associated with typical automobile urban driving conditions. Analytical accuracy is evaluated by comparing Integrated average results to measurements using classical gravimetric filtration and solvent extraction procedures. Mass specifc extinction coefficients are evaluated using the Beer-Lambert law. A simplified linear model relating elemental carbon concentration to opacity is also evaluated.  相似文献   

3.
Open sources are those stationary sources of air pollution too great in extent to be controlled through enclosure or ducting. Open sources of atmospheric particles include: wind erosion, tilling, and prescribed burning of agricultural cropland; surface mining and wind erosion of tailings piles; vehicular travel on both paved and unpaved roads; construction site activity; and forest fires. It is estimated that in 1976 the total open source emissions of particles in the U.S. amounted to over 580 × 106 ton. These estimates indicate that emissions from the two largest open source classes, travel on unpaved roads and agricultural wind erosion, accounted for 86% of this total. The open source emissions in ten states (AZ, CA, KS, MN, MT, NM, ND, OH, SD, TX) contributed 6 2% of the national emissions for 1976.  相似文献   

4.
Conventional types of municipal incinerators generate enormous quantities of stack gas because of high excess air and high temperatures. Under these conditions the size and cost of equipment to clean the flue gas to low dust contents are large. By burning the refuse in boiler furnaces at low excess air, and generating steam, the volume of flue gas to be cleaned is reduced to a minimum. Where high efficiency of flue-dust collection is required, steam generation from refuse firing permits a major saving on the cost of dust collection.  相似文献   

5.
Particulate matter is characterized by its physical and chemical properties. Federal and state emission standards identify two important physical properties, opacity (visible emissions) and particulate mass concentration. In addition, particle size and particle composition are characteristics that play a significant role in the assessment of health effects, visibility, and control strategy. Systems to monitor these particle characteristics are in various stages of development. Opacity monitors have the longest history of commercial availability and of applicability to various source emissions. Particulate mass monitors have a short history as commercially available systems and are under evaluation in various source applications. Particle size monitors are mainly in the advanced prototype development stage undergoing evaluation. Particle composition monitors are in the early stages of development as research prototypes. Real time size monitoring systems will eventually be wedded to real time particle composition analyzers to give a monitoring system for particle size distributions of chemical constituents.  相似文献   

6.
On December 20, 1989, the Environmental Protection Agency (EPA) proposed revised new source performance standards for new municipal waste combustion (MWC) units and guidelines for existing sources. The proposed national regulations require tighter particulate matter control and address pre-combustion, combustion, and post-combustion controls, the latter two depending on capacity and age of the facility.

The air pollutants of concern when municipal solid waste (MSW) is burned will be discussed. Generally, particulate control is an inherent part of the systems used to limit the emissions of these air pollutants. The relationships between MWC air emissions (acid gases, trace organics, and trace heavy metals) control and particulate control will be discussed. Test results to quantify air pollutant emissions from MWC units and their control will be presented and compared with the proposed regulations.  相似文献   

7.
This paper summarizes the methodology developed to analyze alternative oxidant control strategies of the 1979 Air Quality Plan for the San Francisco Bay Area. The analysis of alternative oxidant control strategies is a complex task, particularly when a grid-based photochemical model is the primary analysis tool. To handle quantitatively spatial and temporal variations in emissions under both existing and projected future conditions, as well as to simulate the effects of a wide variety of control strategies, a system of computer-based models was assembled. The models projected and distributed a number of variables in space and time: population, employment, housing, land use, transportation, emissions, and air quality. Given time and budget constraints, an approach to maximizing the information return from a limited number of model runs was developed. The system was applied in three sequences to determine (1) what future air quality would be if no further controls were implemented, (2) the degree of hydrocarbon and NOx emission control necessary to attain the oxidant standard, and (3) the effectiveness of alternative stationary source, mobile source, transportation and land use control strategies in contributing to attainment and maintenance of the oxidant standard.

A number of significant modeling assumptions had to be developed in order properly to interpret the modeled results in the context of the oxidant standard. In particular, a Larsen-type analysis was used to relate modeled atmospheric conditions to “worst case” conditions, and a proportional assumption was made to compensate model results for an imperfect validation. The specification of initial and boundary conditions for future year simulations was found to be a problem in need of further research.  相似文献   

8.
9.
Abstract

Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5–20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.5 are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.  相似文献   

10.
An on-stack transmissometer system which is designed to provide a precision measurement of the opacity of visible emissions is described. The sources of error in opacity measurements with regard to recent EPA emission monitoring requirements and planned specifications are discussed. Sources of error are voltage changes, temperature changes, light source and detector aging and effects of ambient light. Other major operational errors are caused by alignment drift and soiling drift. The methods employed to minimize these errors achieve an accuracy of ±3% of span and a maintenance free operational period of 3 months. The relationships between optical density, opacity and transmittance are described. The instrument measurement can be correlated with dust loading provided the particle size distribution is constant. Examples are given of correlations obtained between optical density and particulate concentration in the gas on various types of emission sources and the observed error margins are summarized.  相似文献   

11.
12.
A linear relationship has been found between oxygen usage and particulate mass emission rate for a basic open hearth furnace. Particulate emissions were found to pass through a minimum at 50% hot metal addition to the furnace which also corresponded to minimum oxygen consumption. Number 2 dealer scrap and hot metal addition were found to have a secondary effect on the particulate emissions. Variation of number 2 dealer scrap from 0 to 15% of the charge and hot metal from 10 to 70% resulted in a maximum 44% increase in particulate emissions. Aerodynamic particle size distributions for all heats and within heats were relatively invariant with an average mass median diameter of 1.4µ  相似文献   

13.
ABSTRACT

This paper describes efforts to reduce particulate matter (PM) emissions from restaurant operations, including application of an existing control method to a new equipment type. Commercial charbroiling in the South Coast Air Basin results in emissions of approximately 10 tons/day of fine particulate matter (PM2.5) and 1.3 tons/day of volatile organic compounds (VOCs). Over a seven-year period, the South Coast Air Quality Management District worked with industry to develop test methods for measuring emissions from various cooking operations, evaluate control technologies, and develop a rule to reduce these emissions.

Of the two basic types of charbroilers—chain-driven and underfired—underfired produce four times the emissions when equivalent amounts of product are cooked. Cost-effective control technology is currently available only for chain-driven charbroilers. The application of flameless catalytic oxidizers to chain-driven charbroilers was found to effectively reduce emissions by at least 83% and is cost-effective. The catalysts have been used worldwide at restaurants for several years. Research efforts are underway to identify control options for underfired charbroilers.

Implementation of Rule 1138, Control of Emissions from Restaurant Operations, adopted November 14, 1997, will result in reductions of 0.5 tons/day of PM2.5 and 0.2 tons/day of VOCs. Future rules will result in reductions from underfired charbroilers and possibly other restaurant equipment when cost-effective solutions are available.  相似文献   

14.
Abstract

The gaseous and nonvolatile particulate matter (PM) emissions of two T56-A-15 turboprop engines of a C-130H aircraft stationed at the 123rd Airlift Wing in the Kentucky Air National Guard were characterized. The emissions campaign supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors of pollutants, and to investigate the spatial and temporal evolutions of the exhaust plumes from fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional instruments were used to physically characterize and quantify the PM emissions from the two turboprop engines. Emissions samples were extracted from the engine exit plane and transported to the analytical instrumentation via heated lines. Multiple sampling probes were used to assess the spatial variation and obtain a representative average of the engine emissions. Particle concentrations, size distributions, and mass emissions were measured using commercially available aerosol instruments. Engine smoke numbers were determined using established Society of Automotive Engineers (SAE) practices, and gaseous species were quantified via a Fourier-transform infrared-based gas analyzer. The engines were tested at five power settings, from idle to take-off power, to cover a wide range of operating conditions. Average corrected particle numbers (PNs) of (6.4–14.3) × 107 particles per cm3 and PN emission indices (EI) from 3.5 × 1015 to 10.0 × 1015 particles per kg-fuel were observed. The highest PN EI were observed for the idle power conditions. The mean particle diameter varied between 50 nm at idle to 70 nm at maximum engine power. PM mass EI ranged from 1.6 to 3.5 g/kg-fuel for the conditions tested, which are in agreement with previous T56 engine measurements using other techniques. Additional PM data, smoke numbers, and gaseous emissions will be presented and discussed.  相似文献   

15.
Field tests were conducted on 82 fuel-burning installations ranging from 50 to 500 hp, fired with residual fuel oils. A flame pyrometer was used to measure peak flame temperatures. Coarse particulates were measured by impingement on adhesive paper strips inserted at right angles to the gas flow and fine particulates by filtration of the gas sample through filter paper. Both were evaluated using a standard Bacharach Scale. The tests clearly established that both coarse and fine particulate matter invariably occurred with low flame temperatures but decreased appreciably when peak flame temperatures reached approximately 2650°F; Minimum values were observed at temperatures somewhere between 2750 and 2850°F. This research was conducted as a result of the problem of acid smut and carbonaceous (ceno-sphere) fallout which appears to have increased with the advent of modern high-efficiency low-temperature heating installations and taller, cooler operating chimneys; sudden deluges of particles from the chimney serving large oil-burning plants soil clothing, pit car finishes, and damage nylon stockings and other materials.  相似文献   

16.
Abstract

In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67–86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.  相似文献   

17.
Studies were made over a 3 year period to evaluate the EPA Method 5 manual particulate sampling procedure in the forest products industry through laboratory and field studies. Results of the study showed that several modifications could be made to improve the performance and suitability of the method for routine source particulate measurements. Physical system changes included the use of a Teflon-lined umbilical cord to the collection system. Procedure changes included changing the isokinetic sampling rate variations to ±20% for emission sources where the particles were smaller than three micrometers in aerodynamic diameter, purging the impinger solutions with an inert gas immediately following collection, and separate evaporation of impinger organics and inorganics at 25 °C and 105°C, respectively. Calculation changes included inclusion of impinger-caught particulate and separate consideration of inorganic and organic particulates.  相似文献   

18.
ABSTRACT

Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

IMPLICATIONS There has been an increased usage of stationary diesel engines, especially backup power generators to meet the growing energy demand. Biodiesel derived from waste cooking oil has received increasing attention as an alternative fuel. However, data are only sparsely available in the literature on particulate emissions from stationary engines, fueled with blends of diesel and biodiesel. This study provides insights into the influence of waste-cooking-oil-derived biodiesel on engine performance and the particulate emissions from a stationary engine. The results of the study form a scientific basis to evaluate the impact of biodiesel emissions on the environment and human health.  相似文献   

19.
Abstract

This paper presents an experimental study of calcium bisulfite oxidation, a key step in the wet limestone-gypsum flue gas desulfurization (FGD) process, in the presence of catalysts (e.g., cobalt ions and a mixture of ferrous and cobalt ions). A fundamental approach is followed, by reproducing a simplified synthetic FGD liquor in which both catalyst ions, alone or mixed together, are present. A laboratory-scale apparatus is used, in which sulfurous solution is contacted with a gas phase at a fixed oxygen partial pressure (21.3 kPa) and at different temperature levels (25, 45, and 55 °C). The experimental results are analyzed using the theory of gas-liquid mass transfer with chemical reaction, showing that the slow reaction regime is explored and the transition from the kinetic to the diffusional subregime is identified. The experimental results are compared with those obtained in the presence of other catalytic species (manganese and ferrous ions), showing that cobalt is effective in catalyzing the oxidation of calcium bisulfite to sulfate, but to a minor extent with respect to iron and manganese.  相似文献   

20.
Abstract

We determined the usefulness of tapered element oscillating microbalances (TEOMs) for researchers and engineers involved with measuring diesel particulate mass. Two different test facilities were used for generating diesel particulates and comparing the TEOM to the commonly used U.S. Environmental Protection Agency (EPA) manual filter method. The EPA method is very labor-intensive and requires long periods of time to complete. The TEOM is an attractive approach because it has the potential to reduce the amount of time and labor required in diesel testing, as well as to provide real-time particulate-mass data that are not obtainable with the EPA method. It was found that the TEOM was a precise and easy-to-operate instrument that could measure the mass concentration (MC) of diesel particulate emissions in real time. Although the TEOM diesel particulate MC measurements were highly correlated with the manual filter measurements, the two techniques were not equivalent because the TEOM consistently reported MC results that were 20–25% lower than those obtained using the manual filter technique. In conclusion, the TEOM can be used to increase test-cell throughput and to measure transient values of diesel par-ticulate emissions at sites performing diesel-engine testing. However, unless EPA is able to certify the TEOM as an equivalent method, it cannot replace the manual filter method for diesel certification work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号