首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes an experimental, domestic-sized, oil-fired furnace to be used for evaluation of fuel additives and equipment design modifications in reducing air pollutant emissions. Operating data and emissions of particulate matter, smoke, carbon monoxide, gaseous hydrocarbons, oxides of nitrogen, and oxides of sulfur are reported over the range of operable air-fuel ratio. Emission levels are interpreted in terms of key operating parameters and potential areas for reduction of emissions.  相似文献   

2.
Abstract

Although there have been several studies examining emissions from in–use alternative fuel vehicles (AFVs), little is known about the deterioration of these emissions over vehicle lifetimes and how this deterioration compares with deterioration from conventional vehicles (CVs). This paper analyzes emissions data from 70 AFVs and 70 CVs operating in the federal government fleet to determine whether AFV emissions deterioration differs significantly from CV emissions deterioration. An analysis is conducted on three alternative fuel types (natural gas, methanol, and ethanol) and on four pollutants (carbon monoxide, total hydrocarbons, non-methane hydrocarbons, and nitrogen oxides). The results indicate that for most cases studied, deterioration differences are not statistically significant; however, several exceptions (most notably with natural gas vehicles) suggest that air quality planners and regulators must further analyze AFV emissions deterioration to properly include these technologies in broader air quality management schemes.  相似文献   

3.
Emissions from a 1988 GM Corsica with adaptive learning closed loop control were measured with 4 fuels at 40, 75, and 90 degrees F. Evaporative and exhaust emissions were examined from each fuel at each test temperature. Test fuels were unleaded summer grade gasoline; a blend of this gasoline containing 8.1 percent ethanol; a refiner's blend stock; and the blend stock containing 16.2 percent methyl tertiary butyl ether. The ethanol and MTBE blends contained 3.0 percent oxygen by weight. Regulated emissions (total hydrocarbons, carbon monoxide, and oxides of nitrogen), detailed aldehydes, detailed hydrocarbons, ethanol, MTBE, benzene, and 1,3-butadiene were determined. The highest levels of regulated emissions were produced at the lower temperature. Blended fuels produced almost twice the evaporative hydrocarbon emissions at high temperatures as did the base fuels. Benzene emissions varied with fuels and operating temperatures, while 1,3-butadiene emissions decreased slightly with increasing temperatures. Formaldehyde emissions were not sensitive to fuel or temperature changes. Ethanol fuel blend total aldehyde emissions increased by 40 percent due to increased acetaldehyde emissions. Fuel blends had approximately a 3 percent economy decrease. The MTBE fuel blend appeared to offer the most reduction in total hydrocarbon, carbon monoxide, and oxides of nitrogen for the fuels and temperatures tested.  相似文献   

4.
Emissions from a 1988 GM Corsica with adaptive learning closed loop control were measured with 4 fuels at 40, 75, and 90° F. Evaporative and exhaust emissions were examined from each fuel at each test temperature. Test fuels were unleaded summer grade gasoline; a blend of this gasoline containing 8.1 percent ethanol; a refiner’s blend stock; and the blend stock containing 16.2 percent methyl tertiary butyl ether. The ethanol and MTBE blends contained 3.0 percent oxygen by weight. Regulated emissions (total hydrocarbons, carbon monoxide, and oxides of nitrogen), detailed aldehydes, detailed hydrocarbons, ethanol, MTBE, benzene, and 1, 3-butadiene were determined.

The highest levels of regulated emissions were produced at the lower temperature. Blended fuels produced almost twice the evaporative hydrocarbon emissions at high temperatures as did the base fuels. Benzene emissions varied with fuels and operating temperatures, while 1, 3-butadiene emissions decreased slightly with increasing temperatures. Formaldehyde emissions were not sensitive to fuel or temperature changes. Ethanol fuel blend total aldehyde emissions Increased by 40 percent due to increased acetaldehyde emissions.

Fuel blends had approximately a 3 percent economy decrease. The MTBE fuel blend appeared to offer the most reduction in total hydrocarbon, carbon monoxide, and oxides of nitrogen for the fuels and temperatures tested.  相似文献   

5.
The main emissions from coal combustion at thermal power plants are carbon dioxide (CO2), nitrogen oxides, sulfur oxides, chlorofluorocarbons (CFCs), and airborne inorganic particles such as fly ash and soot; CO2, methane, and CFCs are greenhouse gases. These emissions are considered to be partially responsible for harmful global climate change. This review summarizes the status of thermal power plants in India and their various types of emissions that directly or indirectly produce harmful effects on the environment and human health. Moreover, it focuses on various types of preventive measures used to avoid/minimize emissions.  相似文献   

6.
The effects of a zeolite urea-selective catalytic reduction (SCR) aftertreatment system on a comprehensive spectrum of chemical species from diesel engine emissions were investigated in this study. Representative samples were collected with a newly developed source dilution sampling system after an aging process designed to simulate atmospheric dilution and cooling conditions. Samples were analyzed with established procedures and compared between the measurements taken from a baseline heavy-duty diesel engine and also from the same engine equipped with the exhaust aftertreatment system. The results have shown significant reductions for nitrogen oxides (NOx), carbon monoxide, total hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and organic carbon (OC) emissions. Additionally, less significant yet notable reductions were observed for particulate matter mass and metals emissions. Furthermore, the production of new species was not observed with the addition of the zeolite urea-SCR system joined with a downstream oxidation catalyst.  相似文献   

7.
Diesel engine emissions are composed of a long list of organic compounds, ranging from C2 to C12+, and coming from the hydrocarbons partially oxidized in combustion or produced by pyrolisis. Many of these are considered as ozone precursors in the atmosphere, since they can interact with nitrogen oxides to produce ozone under atmospheric conditions in the presence of sunlight. In addition to problematic ozone production, Brookes, P., and Duncan, M. [1971. Carcinogenic hydrocarbons and human cells in culture. Nature.] and Heywood, J. [1988. Internal Combustion Engine Fundamentals.Mc Graw-Hill, ISBN 0-07-1000499-8.] determined that the polycyclic aromatic hydrocarbons present in exhaust gases are dangerous to human health, being highly carcinogenic.The aim of this study was to identify by means of gas chromatography the amount of each hydrocarbon species present in the exhaust gases of diesel engines operating with different biodiesel blends. The levels of reactive and non-reactive hydrocarbons present in diesel engine exhaust gases powered by different biodiesel fuel blends were also analyzed.Detailed speciation revealed a drastic change in the nature and quantity of semi-volatile compounds when biodiesel fuels are employed, the most affected being the aromatic compounds. Both aromatic and oxygenated aromatic compounds were found in biodiesel exhaust. Finally, the conservation of species for off-side analysis and the possible influence of engine operating conditions on the chemical characterization of the semi-volatile compound phase are discussed.The use of oxygenated fuel blends shows a reduction in the Engine-Out emissions of total hydrocarbons. But the potential of the hydrocarbon emissions is more dependent on the compositions of these hydrocarbons in the Engine-Out, to the quantity; a large percent of hydrocarbons existing in the exhaust, when biodiesel blends are used, are partially burned hydrocarbons, and are interesting as they have the maximum reactivity, but with the use of pure biodiesel and diesel, the most hydrocarbons are from unburned fuel and they have a less reactivity. The best composition in the fuel, for the control of the hydrocarbon emissions reactivity, needs to be a fuel with high-saturated fatty acid content.  相似文献   

8.
Dyke PH  Foan C  Fiedler H 《Chemosphere》2003,50(4):469-480
This study focused on emissions of polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH) from incineration and power generation processes. Increased concern over human exposure to both classes of compounds has meant that environmental regulators need to assess the contribution made by emissions from regulated processes to human exposure. In the first part of an assessment in the UK we reviewed literature data on emissions of PCB, focusing on the dioxin-like PCB assigned toxic equivalency factors by the World Health Organization, and PAH. The literature study was supplemented by a series of plant tests to gather initial real plant data. Literature data were limited and the lack of standard protocols for measurement and reporting of both PCB and PAH meant that few data sets were comparable. Levels of dioxin-like PCB reported in the literature and measured in UK plant tests showed that well-controlled modem combustion plants with comprehensive pollution controls gave low emissions, typically about 5-10% of the toxic equivalent of the emissions of polychlorinated dibenzodioxins and dibenzofurans at the same plants and below the widely used standard of 0.1 ng TEQ/N m3.  相似文献   

9.
Legislation to control motor vehicle exhaust emissions has been introduced in the United Kingdom in stages since the early 1970s. Recently, a further step has been taken towards reducing future exhaust emissions of carbon monoxide, unburnt hydrocarbons and oxides of nitrogen in the 'Luxembourg agreement' (Lubinska, 1985). In this paper, the possible impact of these proposed controls on photochemical air pollution formation in the United Kingdom is investigated, including an evaluation of the relative merits of the two principal emission control options for petrol-driven cars: 'Lean Burn' engines and 'Catalyst' exhaust gas treatment.  相似文献   

10.
U.S. Environmental Protection Agency (EPA) Method 7473 for the analysis of mercury (Hg) by thermal decomposition, amalgamation, and atomic absorption spectroscopy has proved successful for use in Hg assessment at coal-fired power stations. In an analysis time of approximately 5 min per sample, this instrumental methodology can directly analyze total Hg--with no discrete sample preparation--in the solid matrices associated with a coal-fired power plant, including coal, fly ash, bottom ash, and flue gas desulfurization (FGD) material. This analysis technique was used to investigate Hg capture by coal combustion byproducts (CCBs) in three different coal-fired power plant configurations. Hg capture and associated emissions were estimated by partial mass balance. The station equipped with an FGD system demonstrated 68% capture on FGD material and an emissions estimate of 18% (11 kg/yr) of total Hg input. The power plant equipped with low oxides of nitrogen burners and an electrostatic precipitator (ESP) retained 43% on the fly ash and emitted 57% (51 kg/yr). The station equipped with conventional burners and an ESP retained less than 1% on the fly ash, emitting an estimated 99% (88 kg/yr) of Hg. Estimated Hg emissions demonstrate good agreement with EPA data for the power stations investigated.  相似文献   

11.
With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.  相似文献   

12.
This paper presents a technique to study air pollution by combining high spatial resolution data obtained by a mobile platform and those measured by conventional stationary stations. Conventional stations provide time-series point data but cannot yield information that is distant from the sites. This can be complemented or supplemented by mobile measurements in the vicinity of the conventional sites. Together, the combined dataset yields a clearer and more precise picture of the dispersion and the transformation of pollutants in the atmosphere in a fixed time frame. Several experiments were conducted in the years 2002-2003 to track the impact of power plant plumes on ground receptors in the immediate vicinity (within a radius of 30 km) of the plants, using a combined mobile and stationary dataset. The mobile data allowed the identification of emissions from coal-fired and gas-fired power plants. Coal-fired power plants were the major source of sulfur dioxide (SO2), whereas nitrogen oxides (NOx) emitted from the gas-fired power plant played an important role in the formation of ozone (O3) at ground level. The mobile data showed that two particle size distribution regimes were detected: one had a dominant accumulation mode at 0.40-0.65 microm and the other at 0.65-1 microm. The existence of particles characterized by their mode at 0.65-1 microm and formed by in-cloud processes suggests that vehicular emissions were not the important source. Other local sources, such as power plants (elevated emission), were the likely sources, because Hong Kong does not have much manufacturing industry.  相似文献   

13.
Randomly selected passenger automobiles were driven over a 7.5-mile composite route in Cincinnati, Ohio. Samples of the exhaust gases were collected from each car by means of a proportional sampler and analyzed for gross hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. In addition, detailed analysis of the hydrocarbons was made. This included parafins, 1 through 8 carbon, olefins, 2 through 6 carbon, and aromatics, 6 through 10 carbon. This paper compares the differences in these emissions immediately after starting with “cold” engines as opposed to emissions from cars started with engines already warmed up or “hot.” This determination was made under both cold and warm weather conditions. A comparison is also made in air pollutants emitted from cars driven under the summer as opposed to the winter conditions normally encountered in Cincinnati, Ohio.  相似文献   

14.
Environmental agencies are currently in the process of implementing a new air management program, which includes the improvement of fuel quality. In this work, exhaust emissions data and estimated relative risk for various fuels testing in-use vehicles, equipped with three different exhaust emission control technologies, are presented. Aromatics, sulfur, and olefins contents; type of oxygenated compound; and Reid vapor pressure were varied. The aim also includes calculating the ozone (O3) forming potential and a relative cancer risk of emissions from current and formulated gasoline blends in Mexico. The proposed gasoline decreases carbon monoxide, total hydrocarbons (THC), and nitrogen oxides emissions by 18 and 14%, respectively, when compared with gasoline sold in the rest of the country and within ozone nonattainment metropolitan areas in Mexico, respectively.  相似文献   

15.
Hydrocarbon emissions from gas turbine engines can be divided into unreactive and reactive components. The unreactive component consists of paraffins which do not take part in smog producing reactions with NOx. The reactive portion includes olefins, aro-matics and oxygenated derivatives of hydrocarbons which take part in smog producing reactions with NOx. Odor is attributed normally to the aromatics and oxygenates.

Previous work led to the development of a high temperature subtractive analyzer (APCA 22, 696 (1972) which separates hydrocarbon emissions into a) paraffins and b) aromatics, olefins, and oxygenates. Liquid chromatographic techniques have also been used to separate the hydrocarbons into a) aliphatics, b) aromatics, and c) oxygenates. These aliphatics include olefins.

In this work, engine emissions have been analyzed by these two techniques as a function of engine type, engine thrust (power) and fuel type. Specific engines tested were JT4, JT3D and JT9D. Fuels studied were JP5, and Jet A fuel. Power settings ranged from sub idle to high power. Results using the high temperature subtractive analyzer indicate that the % unreactive hydrocarbons ranges from 30 % at idle to near zero at high power for these engine types and fuels. In general, the higher the total hydrocarbon level, the higher the % unreactive hydrocarbons. Total hydrocarbons decrease sharply with increase in thrust. The emissions from different types of engines at various power settings were collected on an adsorbent Chromosorb 102 and the adsorbate analyzed by liquid chromatographic techniques at A. D. Little, Inc. These results showed similar trends from low power to high power. The oxygenate fraction increased and aliphatic portion decreased. However, the data for this portion of the work were very limited and no firm conclusions can be drawn.  相似文献   

16.
An ambient air monitoring program to characterize airborne emissions from the Exxon petroleum refinery at Benicia, California was conducted during September 8–22, 1975. Ground level sampling facilities and an instrumented aircraft provided an integrated, three-dimensional monitoring network. Measurements made during the study included ozone, oxides of nitrogen, methane, carbon monoxide, individual C2-C6 hydrocarbons, halocarbons, condensation nuclei, visual distance and various meteorological parameters. The study focused on three major areas: (1) the characterization of gaseous components within the refinery effluent, especially non-methane hydrocarbons and ozone, (2) natural sunlight bag irradiation experiments to determine the ozone forming potential of refinery emissions, and (3) an investigation of changes in plume chemistry as refinery emissions were transported downwind.  相似文献   

17.
Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. In this review the state of scientific understanding in relation to global and regional air quality is outlined. The review discusses air quality, in terms of emissions, processing and transport of trace gases and aerosols. New insights into the characterization of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. Trends in anthropogenic emissions both by region and globally are discussed as well as biomass burning emissions. In terms of chemical processing the major air quality elements of ozone, non-methane hydrocarbons, nitrogen oxides and aerosols are covered. A number of topics are presented as a way of integrating the process view into the atmospheric context; these include the atmospheric oxidation efficiency, halogen and HOx chemistry, nighttime chemistry, tropical chemistry, heat waves, megacities, biomass burning and the regional hot spot of the Mediterranean. New findings with respect to the transport of pollutants across the scales are discussed, in particular the move to quantify the impact of long-range transport on regional air quality. Gaps and research questions that remain intractable are identified. The review concludes with a focus of research and policy questions for the coming decade. In particular, the policy challenges for concerted air quality and climate change policy (co-benefit) are discussed.  相似文献   

18.
The chemical composition of emissions from the different anthropogenic sources of non-methane hydrocarbons (NMHC) is essential for modeling and source apportionment studies. The speciated profiles of major NMHC sources in Lebanon, including road transport, gasoline vapor, power generation, and solvent use were established. Field sampling have been carried out by canisters in 2012. Around 67 NMHC (C2 to C9) were identified and quantified by using a gas chromatograph equipped with a flame ionization detector. Typical features of the roadway emissions included high percentages of isopentane, butane, toluene, xylenes, ethylene, and ethyne. Gasoline evaporation profiles included high percentage of the C4–C5 saturated hydrocarbons reaching 59 %. The main compounds of the power generator emissions are related to combustion. Toluene and C8–C9 aromatics were the most abundant species in emissions from paint applications. Finally, the impact of the use of region-specific source profile is tackled regarding the implication on air quality.  相似文献   

19.
Abstract

U.S. Environmental Protection Agency (EPA) Method 7473 for the analysis of mercury (Hg) by thermal decomposition, amalgamation, and atomic absorption spectroscopy has proved successful for use in Hg assessment at coal-fired power stations. In an analysis time of ~5 min per sample, this instrumental methodology can directly analyze total Hg—with no discrete sample preparation—in the solid matrices associated with a coal-fired power plant, including coal, fly ash, bottom ash, and flue gas desulfurization (FGD) material. This analysis technique was used to investigate Hg capture by coal combustion byproducts (CCBs) in three different coal-fired power plant configurations. Hg capture and associated emissions were estimated by partial mass balance. The station equipped with an FGD system demonstrated 68% capture on FGD material and an emissions estimate of 18% (11 kg/yr) of total Hg input. The power plant equipped with low oxides of nitrogen burners and an electrostatic precipitator (ESP) retained 43% on the fly ash and emitted 57% (51 kg/yr). The station equipped with conventional burners and an ESP retained less than 1% on the fly ash, emitting an estimated 99% (88 kg/yr) of Hg. Estimated Hg emissions demonstrate good agreement with EPA data for the power stations investigated.  相似文献   

20.
Characterization of emissions from a variable gasoline/methanol fueled car.   总被引:1,自引:0,他引:1  
In response to the occurrence of the increasingly severe ambient ozone exceedances, regional environmental managers are examining the possibility of a cleaner fuel for automobiles. At this time the leading candidate appears to be methanol. In anticipation of a shift to methanol, flexible-fueled automobiles capable of operating on gasoline and/or methanol are being developed. This study examines both the exhaust and evaporative emissions from a prototype General Motors Variable Fuel Corsica. Results are reported for tests conducted at temperatures of 40 degrees, 75 degrees, and 90 degrees F, and for fuels M0 M25, M50, M85, and M100. In addition to regulated emissions and fuel economy, emission rates for methanol, aldehydes, and a large number of hydrocarbon compounds were measured. The data indicate that increasing the fuel's methanol content does not affect the exhaust organic emission rate (calculated in accordance with the regulation) from flexible-fueled cars, but formaldehyde and methanol comprise increasingly greater portions of the organic material while hydrocarbons comprise less. Increasing fuel methanol content has no significant effect on exhaust regulated emission rates (organic material, carbon monoxide, and nitrogen oxides) nor on the composition of total hydrocarbons, except for methane, which increases substantially. The effect of ambient temperature on both exhaust and evaporative emissions is similar to its effect on gasoline cars: organic and carbon monoxide exhaust emissions increase substantially at the lower temperatures, and evaporative emissions increase steadily with increases in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号