首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
At two sites in the north of the G.D.R. 80–100 km distant from industry rain from individual precipitation events was collected by automatic samplers and relevant ionic species were analyzed. The sampler is described.The cloud routes at the 850 hPa level were traced back 1 day and then seven sectors were formed for each collection site taking into consideration geographical aspects and features of the emission pattern for the rea concerned.Investigating the precipitation components as a function of the emission pattern knowledge of meteorological input parameters are required. The influence of these parameters is reported.Contrary to the combustion of other fossil fuels, in the case of brown coal combustion a considerable emission of neutralizing components (especially CaO) occurs, counteracting the formation of “acid rain”. This effect is clearly proven by means of individual examples and average considerations, i.e. the formation of acid rain does not only depend on the SO2 and NOx emissions.The wet deposition of all types of ions at the measuring site for every emission sector was calculated by means of precipitation statistics. Using these investigations reference points with regard to border crossing transport are given.  相似文献   

2.
The high density network component of the Oxidation and Scavenging Characteristics of April Rains (OSCAR) experiment combined aircraft, surface and sequential precipitation chemistry measurements to characterize the physicochemical and dynamic features of four storms sampled during an April 1981 field investigation. A surface network of 47 precipitation sampling stations, covering a region roughly 110 km by 110 km, was established in the area surrounding Fort Wayne, Indiana. The network provided temporal and spatial resolution of rainfall chemistry via the use of specially designed automatic sequential bulk precipitation collectors, while aircraft and surface sampling provided measurements of the major aerosols and trace gases in the boundary-layer inflow region.Composite concentration and ion ratio profiles for the events were analyzed to investigate potential pollutant scavenging pathways. This analysis led to the following observations:
  • 1.(i) dryfall deposition during pre-rainfall exposure periods influenced initial sampler stage chemistry;
  • 2.(ii) relative precipitation acidity increased throughout the events; SO42− and NO3 were the major contributors to this acidity;
  • 3.(iii) evidence exists for the in-cloud oxidation of SO2 during Events 3 and 4, while scavenging of HNO3 and aerosol NO3 probably produced precipitation NO3;
  • 4.(iv) the non-frontal meteorology of Event 3 influenced the precipitation chemistry associated with this storm and led to distinct concentration profiles;
  • 5.(v) an anomalous pattern of NH4+ concentrations observed during Event 1 cannot be explained by known NH4+ scavenging behavior or by non-scavenging related influences, such as local source contamination or NH3 volatilization;
  • 6.(vi) Event 4 is more suitable for analysis by one- and two-dimensional diagnostic wet removal models. Analysis of the other events is complicated by more complex meteorological behavior and, in some cases, a less complete chemistry data set. This paper enlarges on these observations with comparisons of the major meteorological and chemical characteristics of the four events.
  相似文献   

3.
A method is developed to estimate wet deposition of nitrogen in a 11×14 km (0.125°Lon.×0.125°Lat.) grid scale using the precipitation chemistry monitored data at 10 sites scattered over South Korea supplemented by the routinely available precipitation rate data at 65 sites and the estimated emissions of NO2 and NH3 at each precipitation monitoring site. This approach takes into account the contributions of local NO2 and NH3 emissions and precipitation rates on wet deposition of nitrogen. Wet deposition of nitrogen estimated by optimum regression equations for NO3 and NH4+ derived from annual total monitored wet deposition and that of emissions of NO2 and NH3 is incorporated to normalize wet deposition of nitrogen at each precipitation rate class, which is divided into 6 classes. The optimum regression equations for the estimation of wet deposition of nitrogen at precipitation monitoring sites are developed using the normalized wet deposition of nitrogen and the precipitation rate at 10 precipitation chemistry monitoring sites. The estimated average annual total wet depositions of NO3 and NH4+ are found to be 260 and 500 eq ha−1 yr−1 with the maximum values of 400 and 930 eq ha−1 yr−1, respectively. The annual mean total wet deposition of nitrogen is found to be about 760 eq ha−1 yr−1, of which more than 65% is contributed by wet deposition of ammonium while, the emission of NH3 is about half of that of NO2, suggesting the importance of NH3 emission for wet deposition of nitrogen in South Korea.  相似文献   

4.
Emissions of pollutants such as SO2 and NOx from external combustion sources can vary widely depending on fuel sulfur content, load, and transient conditions such as startup, shutdown, and maintenance/malfunction. While monitoring will automatically reflect variability from both emissions and meteorological influences, dispersion modeling has been typically conducted with a single constant peak emission rate. To respond to the need to account for emissions variability in addressing probabilistic 1-hr ambient air quality standards for SO2 and NO2, we have developed a statistical technique, the Emissions Variability Processor (EMVAP), which can account for emissions variability in dispersion modeling through Monte Carlo sampling from a specified frequency distribution of emission rates. Based upon initial AERMOD modeling of from 1 to 5 years of actual meteorological conditions, EMVAP is used as a postprocessor to AERMOD to simulate hundreds or even thousands of years of concentration predictions. This procedure uses emissions varied hourly with a Monte Carlo sampling process that is based upon the user-specified emissions distribution, from which a probabilistic estimate can be obtained of the controlling concentration. EMVAP can also accommodate an advanced Tier 2 NO2 modeling technique that uses a varying ambient ratio method approach to determine the fraction of total oxides of nitrogen that are in the form of nitrogen dioxide. For the case of the 1-hr National Ambient Air Quality Standards (NAAQS, established for SO2 and NO2), a “critical value” can be defined as the highest hourly emission rate that would be simulated to satisfy the standard using air dispersion models assuming constant emissions throughout the simulation. The critical value can be used as the starting point for a procedure like EMVAP that evaluates the impact of emissions variability and uses this information to determine an appropriate value to use for a longer term (e.g., 30-day) average emission rate that would still provide protection for the NAAQS under consideration. This paper reports on the design of EMVAP and its evaluation on several field databases that demonstrate that EMVAP produces a suitably modest overestimation of design concentrations. We also provide an example of an EMVAP application that involves a case in which a new emission limitation needs to be considered for a hypothetical emission unit that has infrequent higher-than-normal SO2 emissions.
ImplicationsEmissions of pollutants from combustion sources can vary widely depending on fuel sulfur content, load, and transient conditions such as startup and shutdown. While monitoring will automatically reflect this variability on measured concentrations, dispersion modeling is typically conducted with a single peak emission rate assumed to occur continuously. To realistically account for emissions variability in addressing probabilistic 1-hr ambient air quality standards for SO2 and NO2, the authors have developed a statistical technique, the Emissions Variability Processor (EMVAP), which can account for emissions variability in dispersion modeling through Monte Carlo sampling from a specified frequency distribution of emission rates.  相似文献   

5.
This paper focuses on a detailed analysis of the effects of meteorological factors explaining the variability of rain composition.Inorganic composition of 113 individual rain events was measured from May 2002 to October 2005 at a rural site near Chimay, in the western part of the Belgian Ardennes. Original models were fitted for each studied ion (H+, Mg2+, Ca2+, K+, NH4+, Na+, Cl, NO3 and SO42−) to relate rain event concentration or wet deposition to the rainfall volume (R), the length of the antecedent dry period (ADP), the volume of the previous event (Rprev) as well as to the mean wind speed and the prevailing wind direction during both the dry and the rainy periods. These variables explained from 32% (H+) to 69% (NO3) of rain concentration variability. Concentrations decreased logarithmically with increasing R values except in case of H+ for which a positive effect of rain volume on rain concentration was observed. ADP affected positively rain concentrations of all ions excluding K+ and H+ for which, respectively, a nonsignificant and a negative effect of this variable was observed. Increasing Rprev strengthened the effect of the variable R on H+, Mg2+, Ca2+, Na+, NH4+ and SO42− concentrations while it softened the effect of ADP on NO3 concentrations. Wind speed and direction during dry and rainy periods explained together from 8% (K+) to 38% (Na+) of rain concentration total variability. R2 coefficients of the wet deposition models ranged from 0.51 (K+) to 0.79 (SO42−). For all ions, wet deposition increased significantly with increasing R values while the effects of the other variables were similar to those on concentrations. Wind conditions during dry and rainy periods explained from 4% (H+) to 24% (Na+) of wet deposition total variability. On an annual scale, the total dry period duration, the total rainfall volume as well as the shape of the distributions of the length of the antecedent dry periods and of the rain event volume are important parameters that influence annual wet deposition.  相似文献   

6.
The impact of ship emissions on air quality in Alaska National Parks and Wilderness Areas was investigated using the Weather Research and Forecasting model inline coupled with chemistry (WRF/Chem). The visibility and deposition of atmospheric contaminants was analyzed for the length of the 2006 tourist season. WRF/Chem reproduced the meteorological situation well. It seems to have captured the temporal behavior of aerosol concentrations when compared with the few data available. Air quality follows certain predetermined patterns associated with local meteorological conditions and ship emissions. Ship emissions have maximum impacts in Prince William Sound where topography and decaying lows trap pollutants. Along sea-lanes and adjacent coastal areas, NOx, SO2, O3, PAN, HNO3, and PM2.5 increase up to 650 pptv, 325 pptv, 900 pptv, 18 pptv, 10 pptv, and 100 ng m?3. Some of these increases are significant (95% confidence). Enhanced particulate matter concentrations from ship emissions reduce visibility up to 30% in Prince William Sound and 5–25% along sea-lanes.  相似文献   

7.
Abstract

In this paper, we examine the changes in ambient ozone concentrations simulated by the Community Multiscale Air Quality (CMAQ) model for summer 2002 under three different nitrogen oxides (NOx) emission scenarios. Two emission scenarios represent best estimates of 2002 and 2004 emissions; they allow assessment of the impact of the NOx emissions reductions imposed on the utility sector by the NOx State Implementation Plan (SIP) Call. The third scenario represents a hypothetical rendering of what NOx emissions would have been in 2002 if no emission controls had been imposed on the utility sector. Examination of the modeled median and 95th percentile daily maximum 8-hr average ozone concentrations reveals that median ozone levels estimated for the 2004 emission scenario were less than those modeled for 2002 in the region most affected by the NOx SIP Call. Comparison of the “no-control” with the “2002” scenario revealed that ozone concentrations would have been much higher in much of the eastern United States if the utility sector had not implemented NOx emission controls; exceptions occurred in the immediate vicinity of major point sources where increased NO titration tends to lower ozone levels.  相似文献   

8.
A steady state mesoscale model developed to predict primary SO2 concentrations from a single point source is presented. The model was validated with data from the Midwest Interstate Sulfur Transport and Transformation (MISTT) project, with root mean square errors of 9.69 μg m?3 and 0.42 μg m?3 for SO2 and SO4 respectively. Wet deposition (washout and rainout), eddy dispersivity, dry deposition of SO2 and mean wind speed were found to be the most important factors controlling sulfur dioxide and sulfate concentrations. Estimation of precipitation acidity was then carried out using scavenging theory. The greatest potential acidification occurred approximately 200 km from the source along plume centerllne, which indicates a rather local effect as opposed to a long distance effect. The cross-plume influence was up to 60 km in width at a distance of 400 km from the source.  相似文献   

9.
Rain, hail, and snow samples collected in central Alberta have been analyzed for sulfate and chloride content using a conductometric titration method. The mean values of sulfate concentration in rain and hail collected in the region of sulfur extraction gas plants were 2.7 mg/l and 2.9 mg/l respectively. The mean value of the sulfate content of a large number of hail samples collected from one severe storm well removed from a major SO2 source was only 0.6 mg/l. Several snow samples collected in Alberta and southern British Columbia had a mean sulfate content of less than 0.5 mg/l. These results are discussed in terms of the efficiency with which SO2 is removed from the atmosphere by the different precipitation processes. The results strongly suggest that most of the sulfate found in central Alberta precipitation is of local industrial origin.

By comparing the sulfate deposition in precipitation around one isolated gas plant with the known SO2 emission rate, a local atmospheric sulfur budget is derived. This budget indicates that the summertime convective storms are a very efficient mechanism for removing the SO2 from the atmosphere, with between 32 and 46% of the sulfur emitted as SO2 arriving at the ground as sulfate sulfur within a radius of 25 miles of the source. In contrast snow is a very inefficient removal mechanism, since in winter less than 2% of the sulfur emission is deposited in the snowfall near the source.  相似文献   

10.
In this paper, a new method to calculate the average spatial distribution of air pollutants based on diffusive sampling measurements and artificial neural networks evaluation is presented. Most established methods like interpolation algorithms are inflexible or limited in considering important distribution parameters such as emission sources or land use. Of special interest are air quality measurements since they provide a direct view on the actual pollutant level. With diffusive samplers, the average concentration of many gaseous species over a large area can be determined simultaneously. During a project in Cyprus, NO2 diffusive samplers were exposed at 270 sites in six month-long campaigns throughout one year providing the database for the model described in this paper. A multilayer perceptron was trained with the NO2 measurement data and distribution parameters like population density and meteorological parameters using a 1 × 1 km grid covering Cyprus. The best fit could be achieved with an emissions inventory including previously simulated concentration plumes and population density data as input nodes for the neural network, resulting in realistic maps of the annual average distribution of NO2 in Cyprus.  相似文献   

11.
General procedures for adapting emission inventories to regional models and for studying the impact of differences in inventories on model predictions are outlined. To illustrate the methods, analysis of two inventories which are still being validated is presented. The inventories together satisfy current requirements for the NCAR regional acid deposition model (RADM). These include anthropogenic emissions of SO2, sulfate aerosol, NO, NO2, NH3 and volatile organic compounds (VOC) in 10 reactivity classes, from United States and Canadian point and area sources on 80-km grid resolutions, for weekend and weekday seasonally representative days on a diurnal basis during the 1980–1982 period. Application of checking procedures, designed by our group to screen for subtle anomalies not identified at previous stages of quality assurance employed by the inventory developers, resulted in adjustments primarily to VOC emissions. Comparisons of the modified inventories, which provide an indication of uncertainties in emissions due to variations in inventory development procedures, revealed differences in the eastern United States total daily emissions to be at most on the order of 5 % for SOx, and NOx, 20% for VOC and 85% for NH3. Studies of the impact of inventory differences on predictions of RADM were conducted for the 22–24 April 1981 period, which was monitored as part of the Oxidation and Scavenging Characteristics of April Rains program. Event total wet sulfate deposition differed by 10% or less while midday O3 concentrations differed by 1% or less for individual grids over the modeling domain.  相似文献   

12.
Measurements have been made of sulfur and nitrogen compounds in precipitation since 1980 and in air since 1981 in Ontario. This paper presents results of the atmospheric deposition measurement program to the end of 1985. As is to be expected from the distribution of emission sources, annual concentrations of SO42− andNO3 in precipitation, and of SO2,SO42− andNO3 in air are higher in southern Ontario than in northern Ontario. The corresponding distribution pattern for deposition is similar to that of concentration. A wet SO42− deposition rate of 20 kg ha1− y1−, a value considered critical for the acidification of sensitive water bodies, is exceeded in all of central and southern Ontario. On a province-wide basis, sulfur wet deposition is about four times higher than sulfur dry deposition. For nitrogen, wet and dry deposition are more comparable, though the former is still higher. The S- and N-species display different seasonal trends in concentration and deposition reflecting a dependence on meteorological factors, and on the associated chemical transformation rates. On the other hand, year to year variations are small.  相似文献   

13.
ABSTRACT

Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-northeast of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data.

Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to par-ticulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission “signals” to particulate sulfur or light scattering.  相似文献   

14.
The impact of Hurricanes Katrina and Rita in 2005 on pollution emissions in the Gulf of Mexico region was investigated using tropospheric column amounts of nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI) on the NASA Aura satellite. Around New Orleans and coastal Mississippi, we estimate that Katrina caused a 35% reduction in NOx emissions on average in the three weeks after landfall. Hurricane Rita caused a significant reduction (20%) in NOx emissions associated with power generation and intensive oil refining activities near the Texas/Louisiana border. We also found a 43% decrease by these two storms over the eastern Gulf of Mexico Outer Continental Shelf mainly due to the evacuation of and damage to platforms, rigs, and ports associated with oil and natural gas production.  相似文献   

15.
A computer program has been written to determine the cost of building and operating wet scrubbers on individual coal fired utilities in the states where emissions are likely to affect the acid rain problem in the eastern United States. The program differs from many other estimates since it calculates the cost for each of 831 individual sites. The capital costs for installing scrubbers on the top fifty sulfur oxide emitting plants will be about $20 billion. This will result in an increase in the cost of electricity on an average of 0.88 cents/kWh and a reduction of sulfur oxide emissions from 1980 of 7,100,000 tons per year. An additional reduction of at least 1,000,000 tons per year can be obtained by requiring all plants burning oil to burn low sulfur oil. These figures assume utilities will use least emissions dispatching and will use local coals containing at least 3.5 percent sulfur. The use of local coals should result in a further saving of at least 0.2 cents/kWh. This should make available a large supply of low sulfur coal which could reduce emissions of sulfur oxides by up to 1,000,000 tons per year. The SO2 reductions will be continued for at least the next thirteen years and have a very significant effect through the year 2010.  相似文献   

16.
Vanadium compounds are toxic pollutants which require engineering control in the design stage. In the lower Delaware River Valley, the main sources are presently the combustion of vanadium rich fuel oils and the catalytic processing of high vanadium crudes. These and other Industrial emissions, result in atmospheric vanadium concentrations which have varied from 0.133 μg/m3 to 0.557 μg/m3 between 1958 and 1969. Compounds of vanadium, principally with oxygen and sulfur, are considered. The dominance of oxygen compounds over sulfur compounds as derived from equilibrium data, and the tendency of vanadium oxides to move toward vanadium’s maximum valence of +5, indicate the prevalence of V205 as the emission compound.  相似文献   

17.
The atmospheric chemical process was simulated using the Carbon Bond 4 (CB-4) model, the aqueous-phase chemistry in Regional Acid Deposition Model and the thermodynamic equilibrium relation of aerosols with the emission inventories of the Emission Database for Global Atmospheric Research, the database of China and South Korea and the Mesoscale Model version 2 (MM5) meteorological fields to examine the spatial distributions of the acidic pollutant concentrations in East Asia for the case of the long-lasting Yellow Sand event in April 1998. The present models simulate quite well the observed general trend and the diurnal variation of concentrations of gaseous pollutants, especially for O3 concentration. However, the model underestimates SO2 and NOx concentration but overestimates O3 concentration largely due to uncertainty in NOx and VOC emissions. It is found that the simulated gaseous pollutants such as SO2, NOx, and NH3 are not transported far away from the source regions but show significant diurnal variations of their concentrations. However, the daily variations of the concentrations are not significant due to invariant emission rates. On the other hand, concentrations of the transformed pollutants including SO42−, NH4+, and NO3 are found to have significant daily variations but little diurnal variations. The model-estimated deposition indicates that dry deposition is largely contributed by gaseous pollutants while wet deposition of pollutants is mainly contributed by the transformed pollutants.  相似文献   

18.
Multi-year inventories of biomass burning emissions were established in the Pearl River Delta (PRD) region for the period 2003–2007 based on the collected activity data and emission factors. The results indicated that emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), ammonia (NH3), methane (CH4), organic carbon (OC), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and fine particulate matter (PM2.5) presented clear declining trends. Domestic biofuel burning was the major contributor, accounting for more than 60% of the total emissions. The preliminary temporal profiles were established with MODIS fire count information, showing that higher emissions were observed in winter (from November to March) than other seasons. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3  km, using GIS-based land use data as spatial surrogates. Large amount of emissions were observed mostly in the less developed areas in the PRD region. The uncertainties in biomass burning emission estimates were quantified using Monte Carlo simulation; the results showed that there were higher uncertainties in organic carbon (OC) and elemental carbon (EC) emission estimates, ranging from ?71% to 133% and ?70% to 128%, and relatively lower uncertainties in SO2, NOx and CO emission estimates. The key uncertainty sources of the developed inventory included emission factors and parameters used for estimating biomass burning amounts.  相似文献   

19.
This paper evaluates the relative impact on air quality of harbour emissions, with respect to other emission sources located in the same area. The impact assessment study was conducted in the city of Taranto, Italy. This area was considered as representative of a typical Mediterranean harbour region, where shipping, industries and urban activities co-exist at a short distance, producing an ideal case to study the interaction among these different sources. Chemical and meteorological field campaigns were carried out to provide data to this study. An emission inventory has been developed taking into account industrial sources, traffic, domestic heating, fugitive and harbour emissions. A 3D Lagrangian particle dispersion model (SPRAY) has then been applied to the study area using reconstructed meteorological fields calculated by the diagnostic meteorological model MINERVE. 3D short term hourly concentrations have been computed for both all and specific sources. Industrial activities are found to be the main contributor to SO2. Industry and traffic emissions are mainly responsible for NOx simulated concentrations. CO concentrations are found to be mainly related to traffic emissions, while primary PM10 simulated concentrations tend to be linked to industrial and fugitive emissions. Contributions of harbour activities to the seasonal average concentrations of SO2 and NOx are predicted to be up to 5 and 30 μg m−3, respectively to be compared to a overall peak values of 60 μg m−3 for SO2 and 70 μg m−3 for NOx. At selected urban monitoring stations, SO2 and NOx average source contributions are predicted to be both of about 9% from harbour activities, while 87% and 41% respectively of total concentrations are predicted to be of industrial origin.  相似文献   

20.
In response to increasing trends in sulfur deposition in Northeast Asia, three countries in the region (China, Japan, and Korea) agreed to devise abatement strategies. The concepts of critical loads and source?Creceptor (S?CR) relationships provide guidance for formulating such strategies. Based on the Long-range Transboundary Air Pollutants in Northeast Asia (LTP) project, this study analyzes sulfur deposition data in order to optimize acidic loads over the three countries. The three groups involved in this study carried out a full year (2002) of sulfur deposition modeling over the geographic region spanning the three countries, using three air quality models: MM5-CMAQ, MM5-RAQM, and RAMS-CADM, employed by Chinese, Japanese, and Korean modeling groups, respectively. Each model employed its own meteorological numerical model and model parameters. Only the emission rates for SO2 and NOx obtained from the LTP project were the common parameter used in the three models. Three models revealed some bias from dry to wet deposition, particularly the latter because of the bias in annual precipitation. This finding points to the need for further sensitivity tests of the wet removal rates in association with underlying cloud?Cprecipitation physics and parameterizations. Despite this bias, the annual total (dry plus wet) sulfur deposition predicted by the models were surprisingly very similar. The ensemble average annual total deposition was 7,203.6?±?370 kt S with a minimal mean fractional error (MFE) of 8.95?±?5.24?% and a pattern correlation (PC) of 0.89?C0.93 between the models. This exercise revealed that despite rather poor error scores in comparison with observations, these consistent total deposition values across the three models, based on LTP group's input data assumptions, suggest a plausible S?CR relationship that can be applied to the next task of designing cost-effective emission abatement strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号