首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The use of biopurification systems can mitigate the effects of pesticide contamination on farms. The primary aim of this study was to evaluate the effect of pesticide dissipation on microbial communities in a pilot biopurification system. The pesticide dissipation of atrazine, chlorpyrifos and iprodione (35 mg kg?1 active ingredient [a.i.]) and biological activity were determined for 40 days. The microbial communities (bacteria, actinomycetes and fungi) were analyzed using denaturing gradient gel electrophoresis (DGGE). In general, pesticide dissipation was the highest by day 5 and reached 95%. The pesticides did not affect biological activity during the experiment. The structure of the actinomycete and bacterial communities in the rhizosphere was more stable during the evaluation than that in the communities in the control without pesticides. The rhizosphere fungal communities, detected using DGGE, showed small and transitory shifts with time. To conclude, rhizosphere microbial communities were not affected during pesticide dissipation in a pilot biopurification system.  相似文献   

2.
Polar organic chemical integrative samplers (POCIS) are valuable tools in passive sampling methods for monitoring polar organic pesticides in freshwaters. Pesticides extracted from the environment using such methods can be used to toxicity tests. This study evaluated the acute effects of POCIS extracts on natural phototrophic biofilm communities. Our results demonstrate an effect of POCIS pesticide mixtures on chlorophyll a fluorescence, photosynthetic efficiency and community structure. Nevertheless, the range of biofilm responses differs according to origin of the biofilms tested, revealing spatial variations in the sensitivity of natural communities in the studied stream. Combining passive sampler extracts with community-level toxicity tests offers promising perspectives for ecological risk assessment.  相似文献   

3.
Metalaxyl and carbofuran dissipation was studied in response to different factors (soil bacterial communities, light irradiation, presence of an inorganic culture medium and presence of soil) and combinations of these factors in short-term experiments (48 h). The soil microbial communities have no effect on metalaxyl or carbofuran dissipation in the time scale employed. Light irradiation and soil promote metalaxyl and carbofuran dissipation by photodegradation and adsorption, respectively. However, photodegradation has a stronger effect on metalaxyl and carbofuran dissipation than the adsorption of the pesticides in the soil. The addition of the culture medium have no direct effect on pesticide dissipation, degradation by microbial communities or adsorption but its presence greatly increased photodegradation.  相似文献   

4.
Relation between pesticide exposure and intrauterine growth retardation   总被引:3,自引:0,他引:3  
The increased use of organophosphorus insecticides in agriculture and their widespread existence in the environment poses a potential health hazard. To determine the relationship between exposure to pesticides and intrauterine growth retardation (IUGR), live newborns from singleton pregnancies, with (n = 79) and without (n = 292) IUGR were studied. During the gestational period the mothers were living in agricultural communities in the state of Chihuahua, Mexico. Exposure to agrochemical products was evaluated. A significant association between the history of positive exposure to pesticides (i.e. the women themselves or their newborns who showed acetylcholinesterase activity levels lower than 20%) and the presence of IUGR was found. The proportions of exposure in the cases were 18% and 8% in the control group; the adjusted OR (fat free mass, anti-cytomegalovirus antibodies and placental weight) was 2.33 (p = 0.04).  相似文献   

5.
Agricultural landscapes, although often highly altered in nature, provide habitat for many species of amphibian. However, the persistence and health of amphibian populations are likely to be compromised by the escalating use of pesticides and other agricultural chemicals. This review examines some of the issues relating to exposure of amphibian populations to these chemicals and places emphasis on mechanisms of toxicity. Several mechanisms are highlighted, including those that may disrupt thyroid activity, retinoid pathways, and sexual differentiation. Special emphasis is also placed on the various interactions that may occur between different agro-chemicals and between chemicals and other environmental factors. We also examine the indirect effects on amphibian populations that occur when their surrounding pond communities are altered by chemicals.  相似文献   

6.
Darko G  Acquaah SO 《Chemosphere》2008,71(2):294-298
Determination of six organochlorine pesticides, lindane, aldrin, dieldrin, endosulfan, dichlorodiphenyltrichloroethane (DDT), and dichlorodiphenyldichloroethylene (DDE), residues were carried out on three dairy products sampled from six communities in the Kumasi metropolis in Ghana. Cheese samples were collected from three communities, (Tafo, Asawasi, and Aboabo), yoghurt samples from K-Poly and Ayeduasi while yoghurt and milk samples were collected from KNUST. Concentrations of DDT and DDE were, respectively, 42.17+/-6.00 microg kg(-1) and 31.50+/-3.44 microg kg(-1) in cheese sampled from Asawasi. Cheese samples from Tafo had an average DDT concentration of 298.57+/-28.02 microg kg(-1) while DDE concentration was 140.15+/-56.77 microg kg(-1). The highest average concentration of DDT in all the samples was 149.07 microg kg(-1) detected in cheese samples from Aboabo. Levels of DDT and its metabolite, DDE, in cheese from all the three sampling sites (Aboabo, Asawasi and Tafo) were well below the levels recommended by World Health Organisation (WHO). Mean concentration of DDT in fresh milk samples from KNUST was 12.53+/-1.61 microg kg(-1). As bioaccumulation of these residues is likely to pose problems in higher organisms, like human beings, there is the need for effective monitoring of these residues in the environment. This work, thus, seeks to provide information on levels of pesticide residues in dairy products that will assist in a scientific assessment of the impact of pesticides on public health, agriculture and the environment in Ghana.  相似文献   

7.
Biologically based wastewater treatment systems are considered a sustainable, cost-effective alternative to conventional wastewater treatment systems. These systems have been used and studied for the treatment of urban sewage from small communities, and recently, it has been reported that they can also effectively remove emerging organic contaminants (EOCs). EOCs are a new group of unregulated contaminants which include pharmaceutical and personal care products, some pesticides, veterinary products, and industrial compounds among others that are thought to have long-term adverse effects on human health and ecosystems. This review is focused on reporting the ability of biologically based wastewater treatment systems to remove EOCs and the main elimination mechanisms and degradation processes (i.e., biodegradation, photodegradation, phytoremediation, and sorption) taking place in constructed wetlands, ponds, and Daphnia and fungal reactors.  相似文献   

8.

Exposure to mercury (Hg) and pesticides (o.p’DDT, p.p’DDT, o.p’DDE, and p.p’DDE) in the Amazon through eating fish is of concern due to the large participation of this food in the diet of traditional fishing communities. The aim of this study was to evaluate the estimated daily intake (EDI) and the incremental lifetime cancer risk associated with Hg and o.p’DDT, p.p’DDT, o.p’DDE, and p.p’DDE in an Amazonian community. The results showed that for Hg, the EDI from carnivorous and detritivorous fish had the highest values, while for pesticides, the EDI from detritivorous fish intake had the highest value. The incremental lifetime cancer risk was below the permitted limit. A recommendation for controlling the high risk of exposure includes the reduction of detritivorous fish ingestion and/or replacement with herbivorous fish, which had lower EDI. We highlight the importance of investigating the human dietary patterns when estimating risk of exposure to Hg and pesticides.

  相似文献   

9.
随着对农药污染认识的深入,农药对生态系统的初级生产者———藻类毒性以及毒性机制的研究不断增多。农药对藻类的毒性在于破坏藻类生物膜的结构和功能、影响藻类的光合作用、改变呼吸作用以及固氮作用,影响藻类的生理进程并改变其生化组分。开展农药对藻类毒性机理的研究,揭示农药结构—活性关系,对农药的研制和应用,评价农药的生态风险,减少农药对藻类的毒害是重要的。在自然环境中还发现藻能富集和降解农药。因此,对于这些藻来说,农药对藻类的毒害作用和藻类对农药的富集和降解作用可能同时存在。本文综述了农药对藻类的毒性机理以及藻类对农药的富集和降解作用。  相似文献   

10.
Pesticides are used for controlling the development of various pests in agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistent nature and the anomalies they create. Hence removal of such pesticides from the environment is a topic of interest for the researchers nowadays. During the recent years, use of biological resources to degrade or remove pesticides has emerged as a powerful tool for their in situ degradation and remediation. Fungi are among such bioresources that have been widely characterized and applied for biodegradation and bioremediation of pesticides. This review article presents the perspectives of using fungi for biodegradation and bioremediation of pesticides in liquid and soil media. This review clearly indicates that fungal isolates are an effective bioresource to degrade different pesticides including lindane, methamidophos, endosulfan, chlorpyrifos, atrazine, cypermethrin, dieldrin, methyl parathion, heptachlor, etc. However, rate of fungal degradation of pesticides depends on soil moisture content, nutrient availability, pH, temperature, oxygen level, etc. Fungal strains were found to harbor different processes including hydroxylation, demethylation, dechlorination, dioxygenation, esterification, dehydrochlorination, oxidation, etc during the biodegradation of different pesticides having varying functional groups. Moreover, the biodegradation of different pesticides was found to be mediated by involvement of different enzymes including laccase, hydrolase, peroxidase, esterase, dehydrogenase, manganese peroxidase, lignin peroxidase, etc. The recent advances in understanding the fungal biodegradation of pesticides focusing on the processes, pathways, genes/enzymes and factors affecting the biodegradation have also been presented in this review article.  相似文献   

11.
To determine the potential impacts of lawn-care pesticides on aquatic ecosystems, the macroinvertebrate communities of six streams were assessed using a multimetric approach. Four streams flowed through residential neighborhoods of Peachtree City, GA, USA, with differing mean property values and two reference streams were outside the city limits. A series of correlation analyses were conducted comparing stream rank from water quality and physical stream parameters, habitat assessments, benthic macroinvertebrate metric, pesticide toxicity and metal toxicity data to determine relationships among these parameters. Significant correlations were detected between individual analyses of stream rank for pesticide toxicity, specific conductance, turbidity, temperature and dissolved oxygen with benthic macroinvertebrate metrics.  相似文献   

12.
The data presented in this paper emphasize that the behavior and fate of pesticides in the environment is influenced by humic substances. Various methods most frequently used for the characterization of humic substances are discussed. Both humic acid and fulvic acid can solubilize in water certain organic compounds and are important carriers of some pesticides in soil. Humic substances have the potential for promoting the nonbiological degradation of many pesticides. Several methods of bleaching humus color from drinking water, including chlorination, ozonation, and UV-radiation, are described. Finally, the photochemical stability to UV-radiation of certain pesticides in aqueous fulvic acid solution is discussed.  相似文献   

13.
14.
In Kazakhstan, there is a problem of finding ways to clean local sites contaminated with pesticides. In particular, such sites are the deserted and destroyed storehouses where these pesticides were stored; existing storehouses do not fulfill sanitary standards. Phytoremediation is one potential method for reducing risk from these pesticides. Genetic heterogeneity of populations of wild and weedy species growing on pesticide-contaminated soil provides a source of plant species tolerant to these conditions. These plant species may be useful for phytoremediation applications. In 2008–2009 and 2011, we surveyed substances stored in 80 former pesticide storehouses in Kazakhstan (Almaty oblast) to demonstrate an inventory process needed to understand the obsolete pesticide problem throughout the country, and observed a total of 354.7 t of obsolete pesticides. At the sites, we have found organochlorine pesticides residues in soil including metabolites of dichlorodiphenyltrichloroethane and isomers of hexachlorocyclohexane. Twenty-four of the storehouse sites showed pesticides concentrations in soil higher than maximum allowable concentration which is equal to 100 μg kg?1 in Kazakhstan. Seventeen pesticide-tolerant wild plant species were selected from colonizing plants that grew into/near the former storehouse’s pesticides. The results have shown that colonizing plant annual and biannual species growing on soils polluted by pesticides possess ability to accumulate organochlorine pesticide residues and reduce pesticide concentrations in soil. Organochlorine pesticides taken up by the plants are distributed unevenly in different plant tissues. The main organ of organochlorine pesticide accumulation is the root system. The accumulation rate of organochlorine pesticides was found to be a specific characteristic of plant species and dependent on the degree of soil contamination. This information can be used for technology development of phytoremediation of pesticide-contaminated soils.  相似文献   

15.
Solla SR  Martin PA 《Chemosphere》2011,85(5):820-825
Reptiles often breed within agricultural and urban environments that receive frequent pesticide use. Consequently, their eggs and thus developing embryos may be exposed to pesticides. Our objectives were to determine (i) if turtle eggs are capable of absorbing pesticides from treated soil, and (ii) if pesticide absorption rates can be predicted by their chemical and physical properties. Snapping turtle (Chelydra serpentina) eggs were incubated in soil that was treated with 10 pesticides (atrazine, simazine, metolachlor, azinphos-methyl, dimethoate, chlorpyrifos, carbaryl, endosulfan (I and II), captan, and chlorothalonil). There were two treatments, consisting of pesticides applied at application rate equivalents of 1.92 or 19.2 kg a.i/ha. Eggs were removed after one and eight days of exposure and analyzed for pesticides using gas chromatography coupled with a mass selective detector (GC-MSD) or high performance liquid chromatography (HPLC). Absorption of pesticides in eggs from soil increased with both magnitude and duration of exposure. Of the 10 pesticides, atrazine and metolachlor generally had the greatest absorption, while azinphos-methyl had the lowest. Chlorothalonil was below detection limits at both exposure rates. Our preliminary model suggests that pesticides having the highest absorption into eggs tended to have both low sorption to organic carbon or lipids, and high water solubility. For pesticides with high water solubility, high vapor pressure may also increase absorption. As our model is preliminary, confirmatory studies are needed to elucidate pesticide absorption in turtle eggs and the potential risk they may pose to embryonic development.  相似文献   

16.
Abstract

The data presented in this paper emphasize that the behavior and fate of pesticides in the environment is influenced by humic substances. Various methods most frequently used for the characterization of humic substances are discussed. Both humic acid and fulvic acid can solubilize in water certain organic compounds and are important carriers of some pesticides in soil. Humic substances have the potential for promoting the nonbiological degradation of many pesticides. Several methods of bleaching humus color from drinking water, including chlorination, ozonation, and UV‐radiation, are described. Finally, the photochemical stability to UV‐radiation of certain pesticides in aqueous fulvic acid solution is discussed.  相似文献   

17.
Bhanti M  Taneja A 《Chemosphere》2007,69(1):63-68
India is an agrarian country. The use of pesticides, herbicides and fungicides were introduced in India during the mid-sixties, which are now being used on a large scale and is a common feature of Indian agriculture. The main intention of the introduction of pesticides was to prevent and control insects, pests and diseases in the field crops. Initially the use of pesticides reduced pest attack and paved way for increasing the crop yield as expected. Simultaneously, increased use of chemical pesticides has resulted in contamination of environment and also caused many long-term affect on the society. In the present study an effort has been made to evaluate the residual concentration of selected organophosphorous pesticides (methyl parathion, chlorpyriphos and malathion) in vegetables grown in different seasons (summer, rainy and winter). Data obtained was then used for estimating the potential health risk associated with the exposure to these pesticides. The pesticides residue concentrations in vegetables of different season shows that the winter vegetables are the most contaminated followed by summer and rainy vegetables. The concentration of the various pesticides were well below the established tolerances but continuous consumption of such vegetables even with moderate contamination level can accumulate in the receptor's body and may prove fatal for human population in the long term. The analysis of health risk estimates indicated that chlorpyriphos and malathion did not poses a direct hazard, however, exposure to methyl parathion has been found to pose some risk to human health.  相似文献   

18.
The environmental problems that have arisen from the use of persistent pesticides in the past, and potential sources of further contamination have been discussed. The potential and limitations of phytoremediation for removal of pesticides in the environment have been reviewed. The enzymatic processes in plants that are known to be involved in phytodegradation of pesticides, and possibilities for enhancing them have also been discussed.  相似文献   

19.
The impact of pesticides, namely thiobencarb (TBC), molinate (MOL) and chlorpyrifos (CPF), on soil microbial processes was studied in two Australian soils. Substrate induced respiration (SIR), substrate induced nitrification (SIN) and phosphatases and chitinase enzymatic activities were assessed during a 30-day microcosm study. The pesticides were applied to soils at recommended rates either alone, or as binary mixtures with TBC. Soil samples were sampled at 5, 15 and 30 days after pesticide treatments. Substrate induced respiration was only transiently affected by pesticides in both soils. In contrast, the process of indigenous nitrification was affected by the presence of pesticides in both soils, especially when the pesticides were applied as binary mixtures. Substrate induced nitrification increased with pesticides in the Griffith soil (except with MOL+TBC after 5 days) whereas SIN values were non-significantly different to the control on the Coleambally soil. The binary mixtures of pesticides with TBC resulted in a decrease in SIN in both soils, but the effects disappeared within 30 days. The enzymatic activities were not consistently affected by pesticides, and varied with the soil and pesticides studied. This study showed that, when applied at recommended application rates, TBC, MOL, and CPF (individually or as binary mixtures), had little or only transitory effects on the functional endpoints studied. However, further investigations are needed to assess the effect on microbial densities and community structure despite the low disturbance to the functions noted in this work.  相似文献   

20.
随着现代农业的发展,世界范围内使用的农药品种越来越多,用量不断增加。农药对非靶生物的影响以及农药残留导致环境污染,造成生态系统结构和功能的破坏,早已受到了国内外的广泛关注。有关农药对生态系统中消费者类群毒性效应的研究较多。近年来,农药对于生态系统初级生产者- 藻类的毒性及其生态毒理学的研究倍受重视。大力开展这方面的研究对于深入了解农药在生态系统中的迁移、转化及整体生态效应以及农药的生态风险评价无疑具有重要的理论意义和应用价值。本文综述了近年来国内外有关农药对单种藻类和藻类群落的毒性效应,影响毒性的环境因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号