首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A size selective particle sampler has been developed for continuous sampling of the urban aerosol over periods ranging from hours to weeks, providing relatively large sample weights. The system, which is now operating in New York City, uses a parallel array of two-stage samplers. The cyclones used as the first stage collectors have 50% particle retention at 3.5,2.5,1.5 and 0.5 µm aerodynamic diameter, respectively. Undersize particles which pass through the cyclones are captured on glass fiber filters. Equal intake velocities are assured by using flow equalizers on the inlets to the cyclones. Accurate control of the flow through the cyclones is obtained by the use of an integrated circuit pressure transducer in conjunction with a specially designed feedback control circuit. The collection efficiencies of the cyclone were calibrated using monodisperse ferric oxide test aerosols tagged with Tc-99m. Mass balances of the par-ticulates collected on the cyclones and filters are obtained for the five sampling stages. Preliminary results show the distributions of the total suspended particulates in New York City to be bimodal. The distributions of lead, copper, and manganese with particle size are also discussed.  相似文献   

2.
Two versions of a size-classifying isokinetic sequential aerosol sampler (SCISAS) have been designed, built, tested, and deployed in a field program in the southwestern United States. The SCISAS units can operate at unattended sites, exposing four or more filter types simultaneously, in two size ranges, for six sampling time Intervals. Design considerations included theoretical estimates of aerosol particle losses in the 0-15 μm size range.

SCISAS prototypes have been tested to evaluate their sampling efficiency as a function of flow rate, the sensitivity of the sampling efficiency to isokinetic matching within the SCISAS sampling stack, the equivalency of their sampling ports, and their passive deposition characteristics. The prototypes were also compared to several other types of aerosol filtration samplers already in common use. These tests show that particle loss mechanisms within the SCISAS usually cause no more than 5 percent losses, and that the SCISAS units agree, within one to two measurement uncertainty intervals, with other types of aerosol samplers.  相似文献   

3.
Recently fifty-eight measurements of urban aerosol size distributions by Clark have shown that these distributions agree quite well with the self preserving form proposed by Friedlander within the size range of 0.05 to 5 microns radius. This paper shows that for an aerosol obeying the self preserving distribution model, the volume concentration (and, hence, the mass concentration for constant density) is directly proportional to the electric current collected when the aerosol is unipolarly charged, passed through a weak electric field to remove particles smaller than 0.05 micron and then collected by a current collector. It is shown that the linear relation between the mass concentration and collected current is independent of the unipolar charging method used. A test of this theory using Clark’s electric counter data was encouraging and suggests that the electric measurement of urban aerosol mass concentrations by properly designed instruments may be feasible.  相似文献   

4.
ABSTRACT

Originally constructed to develop gaseous emission factors for heavy-duty diesel trucks, the U.S. Environmental Protection Agency's (EPA) On-Road Diesel Emissions Characterization Facility has been modified to incorporate particle measurement instrumentation. An electrical low-pressure impactor designed to continuously measure and record size distribution data was used to monitor the particle size distribution of heavy-duty diesel truck exhaust. For this study, which involved a high-mileage (900,000 mi) truck running at full load, samples were collected by two different methods. One sample was obtained directly from the exhaust stack using an adaptation of the University of Minnesota's air-ejector-based mini-dilution sampler. The second sample was pulled from the plume just above the enclosed trailer, at a point ~11 m from the exhaust discharge. Typical dilution ratios of about 300:1 were obtained for both the dilution and plume sampling systems. Hundreds of particle size distributions were obtained at each sampling location. These were compared both selectively and cumulatively to evaluate the performance of the dilution system in simulating real-world exhaust plumes. The data show that, in its current residence-time configuration, the dilution system imposes a statistically significant bias toward smaller particles, with substantially more nanoparticles being collected than from the plume sample.  相似文献   

5.
The performance features of both industrial and experimental fabric filter systems with respect to the concentration and particle size properties of the collector effluents are examined. From a qualitative viewpoint the factors that should influence significantly the collection characteristics of a fabric filter are dust properties, fabric properties, operating parameters, filter cleaning method, and critical interdependencies. The quantitative prediction of performance and the establishment of design parameters are limited for a generalized approach but data have been reported that provide excellent support for limited applications.  相似文献   

6.
With a specially designed generator, producing an aerosol of concentration, chemical composition, and size distribution similar to incinerator aerosols, a scrubber was tested in the laboratory by sampling before and after the collector. Using an Andersen Sampler as a 7 stage cascade impactor the efficiency for 7 different size classes was determined. This technique provides a rapid and simple method for evaluating the performance of a collector as a function of particle size. The multistage impaction classifies the particles according to their aerodynamic behavior. Gravimetric analysis of each stage eliminates the need for tedious counting and sizing.  相似文献   

7.
Abstract

NOX control employing several combustion modification techniques is studied in batch annealing furnaces and ammonia combustion ovens in steel plants. The fuels of the annealing furnace and ammonia oven are by-product fuel gases and ammonia vapor, respectively, which are generated in the same steelworks. Study of the emission characteristics of the annealing furnace show that delayed combustion can effectively reduce NOX emissions. Delayed combustion is accomplished by air-staging in burners, off-symmetric mixing of fuel and air, and air-biasing in the furnace, and these modification can operations achieve 60%, 40%, and 26% of NOX reductions, respectively. For the ammonia oven, NOX emission from combustion of ammonia vapor is remarkably reduced by staging the air injected into the oven, adjusting the total air rate, and adding by-product fuel gases to the combustion system.  相似文献   

8.
Abstract

In this study, long-term aerosol particle total number concentration measurements in five metropolitan areas across Europe are presented. The measurements have been carried out in Augsburg, Barcelona, Helsinki, Rome, and Stockholm using the same instrument, a condensation particle counter (TSI model 3022). The results show that in all of the studied cities, the winter concentrations are higher than the summer concentrations. In Helsinki and in Stockholm, winter concentrations are higher by a factor of two and in Augsburg almost by a factor of three compared with summer months. The winter maximum of the monthly average concentrations in these cities is between 10,000 cm-3 and 20,000 cm-3, whereas the summer min is ?;5000–6000 cm-3. In Rome and in Barcelona, the winters are more polluted compared with summers by as much as a factor of 4–10. The winter maximum in both Rome and Barcelona is close to 100,000 cm-3, whereas the summer minimum is >10,000 cm-3. During the weekdays the maximum of the hourly average concentrations in all of the cities is detected during the morning hours between 7 and 10 a.m. The evening maxima were present in Barcelona, Rome, and Augsburg, but these were not as pronounced as the morning ones. The daily maxima in Helsinki and Stockholm are close or even lower than the daily minima in the more polluted cities. The concentrations between these two groups of cities are different with a factor of about five during the whole day. The study pointed out the influence of the selection of the measurement site and the configuration of the sampling line on the observed concentrations.  相似文献   

9.
Abstract

Motor vehicle emissions usually constitute the most significant source of ultrafine particles (diameter <0.1 μm) in an urban environment, yet little is known about the concentration and size distribution of ultrafine particles in the vicinity of major highways. In the present study, particle number concentration and size distribution in the size range from 6 to 220 nm were measured by a condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS), respectively. Measurements were taken 30, 60, 90, 150, and 300 m downwind, and 300 m upwind, from Interstate 405 at the Los Angeles National Cemetery. At each sampling location, concentrations of CO, black carbon (BC), and particle mass were also measured by a Dasibi CO monitor, an aethalometer, and a DataRam, respectively. The range of average concentration of CO, BC, total particle number, and mass concentration at 30 m was 1.7?2.2 ppm, 3.4?10.0 μg/m3, 1.3?2.0 × 105/cm3, and 30.2?64.6 μ/m3, respectively.

For the conditions of these measurements, relative concentrations of CO, BC, and particle number tracked each other well as distance from the freeway increased. Particle number concentration (6–220 nm) decreased exponentially with downwind distance from the freeway. Data showed that both atmospheric dispersion and coagulation contributed to the rapid decrease in particle number concentration and change in particle size distribution with increasing distance from the freeway. Average traffic flow during the sampling periods was 13,900 vehicles/hr. Ninety-three percent of vehicles were gasoline-powered cars or light trucks. The measured number concentration tracked traffic flow well. Thirty meters downwind from the freeway, three distinct ultrafine modes were observed with geometric mean diameters of 13, 27, and 65 nm. The smallest mode, with a peak concentration of 1.6 × 105/cm3, disappeared at distances greater than 90 m from the freeway. Ultrafine particle number concentration measured 300 m downwind from the freeway was indistinguishable from upwind background concentration. These data may be used to estimate exposure to ultrafine particles in the vicinity of major highways.  相似文献   

10.
Abstract

The GRIMM model 1.107 monitor is designed to measure particle size distribution and particulate mass based on a light scattering measurement of individual particles in the sampled air. The design and operation of the instrument are described. Protocols used to convert the measured size number distribution to a mass concentration consistent with U.S. Environmental Protection Agency protocols for measuring particulate matter (PM) less than 10 μm (PM10) and less than 2.5 μm (PM2.5) in aerodynamic diameter are described. The performance of the resulting continuous monitor has been evaluated by comparing GRIMM monitor PM2.5 measurements with results obtained by the Rupprecht and Patashnick Co. (R&P) filter dynamic measurement system (FDMS). Data were obtained during month-long studies in Rubidoux, CA, in July 2003 and in Fresno, CA, in December 2003. The results indicate that the GRIMM monitor does respond to total PM2.5 mass, including the semi-volatile components, giving results comparable to the FDMS. The data also indicate that the monitor can be used to estimate water content of the fine particles. However, if the inlet to the monitor is heated, then the instrument measures only the nonvolatile material, more comparable to results obtained with a conventional heated filter tapered element oscillating microbalance (TEOM) monitor. A recent modification of the model 180, with a Nafion dryer at the inlet, measures total PM2.5 including the nonvolatile and semi-volatile components, but excluding fine particulate water. Model 180 was in agreement with FDMS data obtained in Lindon, UT, during January through February 2007  相似文献   

11.
Aerosol light scattering measurements as a function of relative humidity   总被引:1,自引:0,他引:1  
The hygroscopic nature of atmospheric fine aerosol was investigated at a rural site in the Great Smoky Mountains National Park during July and August 1995. Passing the sample aerosol through an inlet, which housed an array of Perma Pure diffusion dryers, controlled the sample aerosol's relative humidity (RH). After conditioning the aerosol sample in the inlet, the light scattering coefficient and the aerosol size distribution were simultaneously measured. During this study, the conditioned aerosol's humidity ranged between 5% < RH < 95%. Aerosol response curves were produced using the ratio bspw/bspd; where bspw is the scattering coefficient measured at some RH greater than 20% and bspd is the scattering coefficient of the "dry" aerosol. For this work, any sample RH values below 15% were considered dry. Results of this investigation showed that the light scattering ratio increased continuously and smoothly over the entire range of relative humidity. The magnitude of the ratio at a particular RH value, however, varied considerably in time, particularly for RH values greater than approximately 60%. Curves of the scattering coefficient ratios as a function of RH were generated for each day and compared to the average 12-hour chemical composition of the aerosol. This comparison showed that for any particular RH value the ratio was highest during time periods of high sulfate concentrations and lowest during time periods of high soil or high organic carbon concentrations.  相似文献   

12.
ABSTRACT

The 1990 Amendments to the Clean Air Act have stimulated strong interest in the use of biofiltration for the economical, engineered control of volatile organic compounds (VOCs) in effluent air streams. Trickle bed air biofilters (TBABs) are especially applicable for treating VOCs at high loadings. For long-term, stable operation of highly loaded TBABs, removal of excess accumulated bio-mass is essential. Our previous research demonstrated that suitable biomass control for TBABs was achievable by periodic backwashing of the biofilter medium. Backwashing was performed by fluidizing the pelletized biological attachment medium with warm water to about a 40% bed expansion. This paper presents an evaluation of the impact of backwashing on the performance of four such TBABs highly loaded with toluene. The inlet VOC concentrations studied were 250 and 500 ppmv toluene, and the loadings were 4.1 and 6.2 kg COD/m3 day (55 and 83 g toluene/m3 hr). Loading is defined as kg of chemical oxygen demand per cubic meter of medium per day. Performance deterioration at the higher loading was apparently due to a reduction of the specific surface of the attached biofilm resulting from the accumulation of excess biomass. For a toluene loading of 4.1 kg COD/m3 day, it was demonstrated that the long-term performance of biofilters with either inlet concentration could be maintained at over 99.9% VOC removal by employing a backwashing strategy consisting of a frequency of every other day and a duration of 1 hr.  相似文献   

13.
ABSTRACT

As part of a pilot study into the chemical and physical properties of Australian fine particles, a suite of aerosol samples was collected at Ti Tree Bend in Launceston, Tasmania, during June and July 1997. This period represents midwinter in the Southern Hemisphere, a period when aerosol sources in Launceston are dominated by smoke from domestic wood burning. This paper describes the results from this measurement campaign, with the aim of assessing the effect of wood smoke on the chemical and physical characteristics of ambient aerosol. A micro orifice uniform deposit impactor (MOUDI) was used to measure the size distributions of the aerosol from 0.05 to 20 n m aerodynamic diameter. Continuous measurements of fine particle mass were made using a PM2.5 tapered element oscillating microbalance (TEOM) and light scattering coefficients at 530 nm were measured with nephelometers.

Mass size distributions tended to be bimodal, with the diameter of the dominant mode tending to smaller sizes with increases in total mass. Non-sea salt potassium and polycyclic aromatic hydrocarbons (PAHs) were used as chemical tracers for wood smoke. Wood smoke was found to increase absolute particle mass (enough to regularly exceed air quality standards), and to concentrate mass in a single mode below 1 μm aerodynamic diameter. The acid-base equilibrium of the aerosol was altered by the wood smoke source, with free acidity hydrogen ion, non-sea salt sulfate, and ammonium concentrations being higher and the concentration of all species, including nitrate (to differing extents), focused in the fine particle size ranges. The wood smoke source also heavily influenced the aerosol scattering efficiency, adding to a strong diurnal cycle in both mass concentration and light scattering.  相似文献   

14.
Abstract

Optical measurements of particle size and concentration were made at the chromium plating tank and exhaust system at a commercial hexavalent chromium plating facility. Particles were examined at three locations in the exhaust system: 1) directly at the hexavalent chromium plating bath surface, 2) at the exit of a cyclone separator located in the exhaust system approximately three to four meters downstream of the bath, and 3) in the exhaust stack, downstream of the induced draft fan and all abatement devices. Particle diameters at the bath surface ranged from 0.3 to 25 μm. Downstream of the cyclone exit and mesh pad filters, particle top sizes were approximately 5 and 0.7 mm, respectively. On a mass basis, the collection efficiency of all abatement devices was 99.997%. Assuming that droplets in the flow consist primarily of water and chromium, correcting the total particle mass flow against water content gives a chromium emission rate of 64,000 μg/hr, which compares favorably with a value of 77,000 μg/hr measured with EPA methods. This initial agreement, which should be validated through additional measurements over a broad range of flow conditions, raises the possibility of continuous monitoring for chromium metal emissions using particle size/mass as a surrogate.  相似文献   

15.
《Environmental Forensics》2013,14(4):305-312
The distribution of metal contaminants between different size fractions of marine sediments is well known. However, the use of size normalization techniques may alter the ability or usefulness in identifying potential sources in complex environments. In a reassessment of metal data from the shelf area of Sydney, Australia, the mud and sand fractions were investigated separately by PCA and PLS methodologies. The analyses were able to produce clear distinctions between industrial/urban sources when based on a suite of metals rather than individual (single-element) concentrations. Signature analysis by PLS with copper, lead, zinc, manganese, chromium, cobalt, nickel, and cadmium demonstrated the dispersion of the fine-grained contaminated material to the south in the East Australian Current. However, due to the commonality between many of the metals, a subset of four metals was used to define the signature. This significantly improved separation, showing clear plumes extending ~30 km from the source rivers.  相似文献   

16.
Abstract

Three 2-wk seasonal field campaigns were performed in 2003 and 2004 at a sampling site on the southern Tyrrhenian coast of Italy with the aim to investigate the dynamics and characteristics of particle-bound pollutants in the Mediterranean area. Fine (PM2.5) and coarse particulate matter (PM10–2.5) size fractions were collected by a manual dichotomous sampler on 37-mm Teflon filters over a 24-hr sampling period. On average, 70% of the total PM10 (PM2.5 + PM10–2.5) mass was associated with the coarse fraction and 30% with the fine fraction during the three campaigns. The ambient concentrations of Pb, Ni, Cr, Zn, Mn, V, Cd, Fe, Cu, Ca, and Mg associated with both size fractions were determined by atomic absorption spec-trometry. Ambient concentrations showed differences in their absolute value, ranging from few ng · m-3 to µg ?m-3, as well as in their variability within the PM2.5 and PM10–2.5 size fractions. PM10 levels were well below the European Union (EU) limit value during the study period with the exception of three events during the first campaign (fall) and five events during the third campaign (spring). Two main sources were identified as the major contributors including mineral dust, transported from North Africa, and sea spray from the Tyrrhenian Sea. Comparing the results with backward trajectories, calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) and Total Ozone Mapping Spectrometer-National Aeronautics and Space Administration (TOMS-NASA) maps, it was observed that in central and eastern Europe, the Tyrrhenian Sea and North Africa were the major emission source regions that affected the temporal variations and daily averages of PM2.5 and PM10–2.5 concentrations.  相似文献   

17.
Recent investigations of ambient aerosol behavior over urban areas have pointed out the need for controlled experimental data to link together field investigation results and computer simulation studies. This paper describes the design considerations, construction details and operating parameters of a large (8000 ft3) outside reaction chamber constructed in rural North Carolina. The chamber is triangular in cross-section, 20 ft wide, 20 ft high and 40 ft long, and is covered with clear 5 ml Teflon film. The outdoor location of the chamber permits the reaction volume to be exposed to the natural conditions of temperature and solar radiation. A recirculating air system allows the air in the chamber to be passed through an “absolute” fiberglas filter for adjustment of condensation nuclei concentration and also through driers for humidity adjustment. Internal fans are provided for mixing of the chamber contents without use of the recirculating system so that various degrees of turbulence can be approximated. A sampling line from the chamber passes directly to an instrument room, located directly under the chamber, where direct analyses for particle composition, concentration, and size, and gas composition and concentration are carried out. Parameters which can be varied in this system include number, size, distribution, and chemical composition of pre-existing nuclei, as well as humidity, solar radiation, temperature, and trace gas concentration and composition.  相似文献   

18.
Abstract

This paper reports on the performance of the Kimoto 180 sampler and the Wedding ambient PM10 beta gauge sampler. Monodisperse ammonium fluorescein test particles were generated in the laboratory and used to determine the penetration curve of the Kimoto 180 cyclonic inlet. It was found that the actual DpaSOof the Kimoto 180 inlet, 3.5 (xm, is much lower than the designated standard value, 10 um. In the field test, the two beta gauge samplers were collocated with an Andersen SA1200 high-volume sampler to compare their measured daily average PM10 concentrations.

The low Dpa50 of the Kimoto 180 inlet serves to explain why its daily average PM10 concentrations were much lower than the actual PM10 concentrations found in the field study. In addition, the PM10 concentrations of the Kimoto 180 beta gauge sampler were found to be seriously affected by the water vapor content of the ambient air. In contrast, the daily average PM10 concentrations of the Wedding beta gauge sampler were found to be more accurate, and influences by ambient conditions were insignificant  相似文献   

19.
Epidemiological assessments of population exposures to airborne particles are often hampered by the scarcity of available fine particle mass measurements. In an attempt to overcome this serious problem, we analyze In this paper methods for predicting fine particle (M 1) and Inhalable particle (IP) mass concentrations using relative humidity corrected light extinction coefficient (b ext) estimated from airport visual range (V r) observations. The analyses presented are based on theoretical determinations as well as statistical investigations utilizing EPA's NASN and Inhalable Particle Monitoring Network (IPMN) data bases and routine airport visual range observations In twelve large U.S. cities. Our results Indicate that, after controlling for certain limitations of airport visual range data, most of the regression models developed in this paper can be applied satisfactorily to predict M t and IP. Furthermore, our findings Indicate that a more representative formula than the commonly used meteorological range formula to predict atmospheric b ext values in urban areas may be b ext = (1.8 ± 0.04)/V r. Because of known local or regional influences, however, we do suggest calibration of any predictive model which utilizes airport visibility data against site-specific aerometric data on particle mass concentrations or scattering coefficient measurements.  相似文献   

20.
The body of information presented in this paper is directed to those individuals concerned with the measurement of the size distribution of particulate matter in air. The light scattering instrument described herein is characterized by the fact that it can accurately size particles almost independently of their index of refraction. The basic concept involves the simultaneous measurement of the intensity of light scattered by a single particle at two small scattering angles. The ratio of the two intensities is directly related io ine size of ihe pariicle, and for scattering angles of 5° and 10° the effective range of the instrument is 0.2 to 4 μm. The air flows through the optical system at such a rate that approximately 25 μs are required to determine the size of each particle, and concentrations as high as 104 particles/cc can be measured without dilution and without serious coincidence effects. By employing a multichannel analyzer as the data storage and readout device it is possible to detect changes in particulate size distribution within a few seconds. Calibration of the instrument has been performed using polystyrene latex spheres and materials having a wide range of index of refraction and shape including carbon black, iron oxide and spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号