首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The technology of fluidized-bed combustion (FBC) of coal generates byproducts that have a series of unique characteristics and potential uses in technological practice. In this study, the products of fluidized-bed combustion (FBC-P) of coal derived from Moravian heat stations, a.s. Zlin, Cinergy Global Resources, Czech Republic, were characterized. Particular attention was paid to determining the chemical composition of FBC-P, the content of polycyclic aromatic hydrocarbons (PAHs) and toxic metals in the water leachates of these FBC-P, the content of unburned carbon, the capability of FBC-P to solidify with water and form a solid matrix, and the method for discovering optimum mixing water content for FBC-P solidification. The results suggest that one of the qualitatively more important means of utilizing FBC-P could be their application during solidification/stabilization (S/S) of wastes, particularly wastewa-ter treatment sludges.  相似文献   

2.
3.
Abstract

Combustion of spent vacuum residue hydrodesulfurization catalyst and incineration of paper sludge were carried out in thermo-gravimetric analyzer and an internally circulating fluidized-bed (ICFB) reactor. From the thermogravimetric analyzer-differential thermo-gravimetric curves, the pre-exponential factors and activation energies are determined at the divided temperature regions, and the thermo-gravimetric analysis patterns can be predicted by the kinetic equations. The effects of bed temperature, gas velocity in the draft tube and annulus, solid circulation rate, and waste feed rate on combustion efficiency of the wastes have been determined in an ICFB from the experiments and the model studies. The ICFB combustor exhibits uniform temperature distribution along the bed height with high combustion efficiency (>90%). The combustion efficiency increases with increasing reaction temperature, gas velocity in the annulus region, and solid circulation rate and decreases with increasing waste feed rate and gas velocity in the draft tube. The simulated data from the kinetic equation and the hydrodynamic models predict the experimental data reasonably well.  相似文献   

4.
Abstract

Inspection and maintenance programs for motor vehicles in the United States increasingly use loaded mode mass emissions testing (IM240). A method was developed to predict mass emission rates and mass emission changes, particularly from repair benefits, using a low-cost, portable four-gas non-dispersive infrared (NDIR) vehicle exhaust gas analyzer. A single vehicle was tested several times with the analyzer while on the dynamometer and undergoing successive repairs. Excellent correlations for CO and HC were observed. Five vehicles were measured using an on-road driving loop before and after emissions-related repairs, while another three vehicles were tested with no repairs performed. The on-road concentration data used to guide the repair process were converted to grams per gallon; when divided by estimated miles per gallon, this gave grams per mile emissions for comparison to IM240. Correlation coefficients (r2) of 0.87 for CO and 0.76 for HC were achieved for the 13 tests. The linear correlations between IM240 and emissions measured by this method would allow repair facilities to perform a relatively inexpensive test for diagnostic purposes and to estimate repair effectiveness without the need for a dynamometer.  相似文献   

5.
6.
Nitrogen oxides are a potential atmospheric pollutant. Their formation and decomposition were studied in an experimental pulverized-coal-fired furnace. The concentration of nitrogen oxides (NOx) was a maximum in the combustion zone and decreased as the combustion gas cooled. At a coal burning rate of 2 Ib/hr and 22% excess air, reduction of nitrogen oxides was obtained by selective secondary-air distribution. With 105% cf the stoichiometric air fed to the coal-combustion zone and 17% additional air fed just beyond the flame front, 62% reduction of NOx occurred with good combustion efficiency. Lowering the quantity of excess air lowered the NOx concentration, but at the expense of combustion efficiency. When 22% excess air was fed to the primary combustion zone, NOx concentration in the effluent was 550 ppm and carbon in the fly ash 2.0%. With 5% excess air, the NOx concentration fell to 210 ppm and carbon in the fly ash rose to 13.8%. With stoichiometric combustion the NOx was 105 ppm a reduction of 81 %, and the carbon was 42.3%. Recirculation of combustion gas was not an effective means of lowering NOx formation.  相似文献   

7.
Abstract

The long-term stability of Hg in coal combustion byproducts (CCBs) was evaluated at ambient and near-ambient temperatures. Six CCB samples with atypically high levels of total Hg were selected for study assuming a greater potential for release of measurable amounts of Hg vapor. The samples selected included two fly ash samples from U.S. eastern bituminous coal, two fly ash samples from South African low-rank coal, one fly ash from Powder River Basin (PRB) subbituminous coal blended with petroleum coke, and one PRB subbituminous coal fly ash incorporated with flue gas desulfurization material.

Air scrubbed of Hg was passed through compacted 100-g aliquots of each sample at 1 mL/min and vented to a gold-coated quartz trap to collect released Hg vapor. The samples were maintained at ambient and near-ambient (37 °C) temperatures. All samples released low-picogram levels of Hg after 90 days. No pattern was evident to link the total Hg content to the rate of release of Hg vapor. An average of 0.030 pg Hg/g CCB/day was released from the samples, which equates to 2.2 x 10-8 lb Hg/ton CCB/year. If this were applied to a coal-fired power plant production of 200,000 tons of fly ash per year, there would be a maximum potential release of 0.0044 lb, or 2.00 g, of Hg per year. Experiments are continuing to determine long-term vapor release of Hg from CCBs. All samples have been set up in duplicate at ambient temperature with an improved apparatus to reevalu-ate results reported in this article.  相似文献   

8.
ABSTRACT

U.S. Environmental Protection Agency (EPA) research examining the characteristics of primary PM generated by the combustion of fossil fuels is being conducted in efforts to help determine mechanisms controlling associated adverse health effects. Transition metals are of particular interest, due to the results of studies that have shown cardiopulmonary damage associated with exposure to these elements and their presence in coal and residual fuel oils. Further, elemental speciation may influence this toxicity, as some species are significantly more water-soluble, and potentially more bio-available, than others. This paper presents results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particle size distributions (PSDs) were determined using atmospheric and low-pressure impac-tion as well as electrical mobility, time-of-flight, and light-scattering techniques. Size-classified PM samples from this study are also being utilized by colleagues for animal instillation experiments.

Experimental results on the mass and compositions of particles between 0.03 and >20 μm in aerodynamic diameter show that PM from the combustion of these fuels produces distinctive bimodal and trimodal PSDs, with a fine mode dominated by vaporization, nucleation, and growth processes. Depending on the fuel and combustion equipment, the coarse mode is composed primarily of unburned carbon char and associated inherent trace elements (fuel oil) and fragments of inorganic (largely calcium-alumino-silicate) fly ash including trace elements (coal). The three coals also produced a central mode between 0.8- and 2.0-μm aerodynamic diameter. However, the origins of these particles are less clear because vapor-to-particle growth processes are unlikely to produce particles this large.

Possible mechanisms include the liberation of micron-scale mineral inclusions during char fragmentation and burnout and indicates that refractory transition metals can contribute to PM <2.5 μm without passing through a vapor phase. When burned most efficiently, the residual fuel oil produces a PSD composed almost exclusively of an ultrafine mode (~0.1 μm). The transition metals associated with these emissions are composed of water-soluble metal sulfates. In contrast, the transition metals associated with coal combustion are not significantly enriched in PM <2.5 μm and are significantly less soluble, likely because of their association with the mineral constituents. These results may have implications regarding health effects associated with exposure to these particles.  相似文献   

9.
Since 1966, the Division of Laboratories of the Department of Health of the City of Montreal is carrying on measurements of gaseous pollutants. In order to efficiently use the technical staff that our administrators wanted to devote to the fight against air pollution, a new lead dioxide support for the determination of sulfur dioxide has been devised. The preparation of candies according to the standard method requires much time and skill from the operator, whereas the technique that is proposed is rapid, easy, and provides plates of a high degree of uniformity. A technician with little experience can coat a great number of plates per day with no difficulty. N. A. Huey working at the National Center for Air Pollution Control in Cincinnati published in the September 1968 issue of this Journal a new technique which consists of coating the inside of a plastic Petri dish with a PbO2 paste. His method also has the above mentioned advantages. The plates that are suggested allow a simplification of the preliminary work for several types of analyses such as gra-vimetry,1 colorimetry,3 turbidimetry,4,5 titrimetry,6 and nephelemetry.8  相似文献   

10.
11.
Abstract

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from ~96% at the inlet of the reactor to ~80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

12.
Abstract

Many areas in Jordan suffer from elevated levels of coarse particulate matter (PM10). One potentially significant source of the observed PM is the resuspension of road dust in the vicinity of limestone quarries. To obtain data to assess the impact from this source, PM10 road dust resus-pension factors near Abusiiah, a town to the north east of Amman surrounded by many quarries and brick factories, were measured. Measurements included PM10 mass, particle size distributions, wind speed, and wind direction.The results showed that PM10 concentrations could be as high as 600 µg/m3, and most of the airborne PM is in the coarse fraction. Loading trucks play a major role in resus-pending road dust, with an observed PM10 emission rate of >6000 mg/km.  相似文献   

13.
Abstract

Artificially lead-contaminated soils with different lead contents (200, 450, 600, and 900 ppm) were thermally immobilized in both fixed-bed and fluidized-bed modes at moderate treating temperatures (less than 500 °C) for various retention times. Cement powder and brick powder were added to the artificially contaminated soils to enhance lead immobilization. Results indicate that increasing treating temperature and time increases the extent of lead immobilization, as determined by the U.S. Environmental Protection Agency's (U.S. EPA) Toxicity Characteristics Leachability Procedure (TCLP). The percentage of lead leached from the soil/ cement mixtures was in the range of less than 0.251%, compared with the range between 13.6% and 40.7% for the corresponding soil/brick mixtures. As the amount of brick dust added to the Pb-doped soil was increased, the specific Pb immobilization effectiveness increased from 0.0675 to 0.149 mg Pb/g brick (for the 20- and 50-gram brick addition, respectively). An increase in air flow rate from 2 to 40 L/min caused a slight decrease in the Pb leaching percentage from 14.96% to 11.59%. Both the Freundlich and Langmuir isotherms give a satisfactory fit (r = 0.945 ~ 0.998) for the data derived from a TCLP test of the thermally-treated soil samples (105 °C and 500 °C) that contained lead contaminants. Sorption of lead contaminants in soil and sorbent matrices was the primary type of chemisorption. The kinetic results indicated that the Pb-doped soil system was too complicated to be described by a simple calculation.  相似文献   

14.
ABSTRACT

U.S. Environmental Protection Agency (EPA) Method 26A is the recommended procedure for capturing and speci-ating halogen (X2) and hydrogen halide (HX) stack emissions from combustion sources. Previous evaluation studies of Method 26A have focused primarily on hydrogen chloride (HCl) speciation. Capture efficiency, bias, and the potential interference of Cl2 at high levels (>20 ppm [u,g/m3]) and NH4Cl in the flue gas stream have been investigated. It has been suggested that precise Cl2 measurement and accuracy in quantifying HX or X2 using Method 26A are difficult to achieve at Cl2 concentrations <5 ppm; however, no performance data exist to support this. Coal contains low levels of Cl, in the range of 5-2000 ppmw, which results in the presence of HCl and Cl2 in the products of combustion. HCl is the predominant Cl compound formed in the high-temperature combustion process, and it persists in the gas as the products of combustion cool. Concentrations of Cl2 in coal combustion flue gas at stack temperatures typically do not exceed 5 ppm. For this research, bench-scale experiments using simulated combustion flue gas were designed to validate the ability of Method 26A to speci-ate low levels of Cl2 accurately. This paper presents the results of the bench-scale tests. The effect of various flue gas components is discussed. The results indicate that SO2 is the only component in coal combustion flue gas that has an appreciable effect on Cl2 distribution in Method 26A impingers, and that Method 26A cannot accurately speciate HCl and Cl2 in coal combustion flue gas without modification.  相似文献   

15.

The water balance for the site Mühleggerköpfl in the North Tyrolean Limestone Alps has been established to a soil depth of 50 cm. The evaporation amounts to 42% and deep percolation is 58 % of the precipitation. The surface runoff was negligible and therefore the according nitrate fluxes as well. Soil water analysis revealed mean nitrate concentrations of 3 to 15 mg NO3 L−1, depending on soil depth. The nitrate concentrations at 50 cm soil depth and the associated percolation rates led to NO2 N outputs of 15.9 kg NO3 N ha−1 in the year 1999 and 7.9 kg NO3 N ha−1 in the year 2000.

  相似文献   

16.
17.
Batch limestone dissolution experiments were carried out in a pH stat apparatus at 55°C with CO2 sparging and dissolved sulfite. Particle size distribution, utilization, sulfite in solution, limestone type, and the approach to calcite equilibrium were all found to contribute to the limestone reactivity. In the absence of sulfite, limestone dissolution was controlled solely by mass transfer. For a given stone under mass transfer control, film thickness was found to be independent of pH. The dissolution rate in the presence of sulfite was controlled by a combined surface kinetics/mass transfer regime. SEM micrographs supported this conclusion. A surface rate correlation was developed which accounted for observed inhibition by an inverse dependence on calcium sulfite concentration at the limestone surface. While the form of the rate expression was applicable to all stones, the surface rate constant was stone dependent. A computer code which accounted for mass transfer with surface kinetics was tested against experimental observations of four limestone types. Changes in pH and the concentrations of calcium, carbonate, sulfite, sulfate, and adipic acid were accurately modeled.  相似文献   

18.
Abstract

This study investigates the combustion kinetics and emission factors of 16 U.S. Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) in polylactic acid (PLA) combustion. Experimentally, two reactions are involved in the PLA combustion process that potentially result in the release of lactide, acetaldehyde, and n-hexaldehyde. The products may continuously be oxidized to form carbon dioxide (CO2) and some PAHs produced because of incomplete combustion. The analytical results indicate that the emission factors for PAHs are in the range of not detectable to 98.04 μg/g. The emission factors are much lower than those of poly(ethylene terephalate) (PET) and other combustion of plastics. Results from this work suggest that combustion is a good choice for waste PLA disposal.  相似文献   

19.

Microorganisms are responsible for the mineralisation of organic nitrogen in soils. NH +4 can be further oxidised to NO3 during nitrification and NO3 can be reduced to gaseous nitrogen compounds during denitrification. During both processes, nitrous oxide (N2O), which is known as greenhouse gas, can be lost from the ecosystem.

The aim of this study was to quantify N2O emissions and the internal microbial N cycle including net N mineralisation and net nitrification in a montane forest ecosystem in the North Tyrolean Limestone Alps during an 18-month measurement period and to estimate the importance of these fluxes in comparison with other components of the N cycle. Gas samples were taken every 2 weeks using the closed chamber method. Additionally, CO2 emission rates were measured to estimate soil respiration activity. Net mineralisation and net nitrification rates were determined by the buried bag method every month. Ion exchange resin bags were used to determine the N availability in the root zone.

Mean N2O emission rate was 0.9 kg N haa, which corresponds to 5 % of the N deposited in the forest ecosystem. The main influencing factors were air and soil temperature and NO 3 accumulated on the ion exchange resin bags. In the course of net ammonification, 14 kg NH +4 −N ha were produced per year. About the same amount of NO 3 −N was formed during nitrification, indicating a rather complete nitrification going on at the site. NO t-3 concentrations found on the ion exchange resin bags were about 3 times as high as NO t-3 produced during net nitrification, indicating substantial NO t-3 immobilisation. The results of this study indicate significant nitrification activities taking place at the Mühleggerköpfl.

  相似文献   

20.
This publication concerns the dry removal of SO2 from gases using limestone absorbents. It reports bench-scale experiments made with commercial samples of powdered limestone (CaCO3) activated by addition of a cheap substance, namely CaCl2. The absorption was carried out in a fluidized bed traversed by the flue gases, between 600° and 900° C. The degree and rate of transformation of CaCO3 to CaSO4 in the presence of SO2 and air have been compared for unmodified and modified absorbents. Initial rates of reaction, and the variation of the rate of absorption with time have been measured. The influence of the SO2 content of the gas has been assessed. At 700° C, the maximum degree of transformation of activated limestone to sulfate exceeds 90%, whereas untreated CaCO3 transforms only to 16–20%. At the same temperature, more than 90% of SO2 contained In a gas carrying 0.35% SO2 is removed. Because of the much smaller quantity of solid absorbent required, dry absorption processes based on the modified absorbents might get renewed interest. The modified absorbents might also be used for in situ absorption in fluidized bed combustion, in which the temperatures are in the range studied in the present paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号