首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用菌剂挂膜,活性污泥挂膜和自然挂膜3种不同方式形成生物滴滤塔,考察挂膜方式对生物滴滤塔去除H2s恶臭气体的影响。结果表明,当进气H2S浓度为5mg/m3时,菌剂挂膜、活性污泥挂膜、自然挂膜形成的生物滴滤塔出气H2s浓度分别为15.7~17.4、11.6~14.8和15.0~15.9μg/m3;塔内压降分别为3—4mm水柱、6mm水柱和4—5mm水柱;喷淋后滤出液中硫酸根的浓度分别为14、22和17mg/L,硫的转化率分别为45%、60%和50%。当进气H2S浓度增大至7mg/m3时,3个塔经过7d的调整后,均能达到稳定状态,稳定后3个塔中出气H2s浓度和压降基本没变,喷淋后滤出液中硫酸根浓度依次增大至25、31和30mg/L左右。采用活性污泥挂膜形成的生物滴滤塔处理H2s的能力比菌剂挂膜和自然挂膜的高。  相似文献   

2.
The control of fugitive process emissions (FPE) with Spray Charging and Trapping (SCAT) scrubber was evaluated both theoretically and experimentally. The SCAT uses air curtain and/or jets to contain, convey, and divert the FPE into a charged spray scrubber.

Experiments were performed on an 8000 cfm bench-scale spray scrubber to verify the theory and feasibility of collecting fugitive particles with charged water spray. The effects of charge levels on drops and particles, nozzle type, drop size, gas velocity, and liquid/gas ratio on collection efficiency were determined experimentally. The results of the experiments and the comparison between theory and data are presented.

An air curtain was developed for conveying the FPE to the spray scrubber, deflecting the crosswind, and containing hot buoyant plume. The design and air flow field for the air curtain are presented.  相似文献   

3.
A simple method for quantitative analyses of organic chlorine pesticides (OCPs) in environmental water samples such as rainwater, river water and seawater using activated carbon fiber filters (ACFF) is described. ACFF was used as adsorbent to collect the chemicals in water samples. The collection of OCPs was completed almost for one day by stirring the mixture of the sample and the ACFF chips at room temperature. The adsorbed OCPs on the ACFF could be extracted easily with toluene-ethanol (4:1) mixed solvent. The purified extract by a florisil column chromatograph was followed by the analysis using high-resolution gas chromatograph/high-resolution mass spectrometer. Recoveries of OCPs spiked to actual samples such as rainwater, river water and seawater samples were approximately more than 80%, and the coefficients of variations were within 10%. This method was applied to the actual samples and was confirmed to be applicable for monitoring sub-ng/l level OCPs in environmental water samples.  相似文献   

4.
Nylon filters are a popular medium to collect atmospheric fine particles in different aerosol monitoring networks, including those operated by the U.S. Environmental Protection Agency and the Interagency Monitoring of Protected Visual Environments (IMPROVE) program. Extraction of the filters by deionized water or by a basic aqueous solution (typically a mixture of sodium carbonate and sodium bicarbonate) is often performed to permit measurement of the inorganic ion content of the collected particles. Whereas previous studies have demonstrated the importance of using a basic solution to efficiently extract gaseous nitric acid collected using nylon filters, there has been a recent movement to the use of deionized water for extraction of particles collected on nylon filters to eliminate interference from sodium ion (Na+) during ion chromatographic analysis of inorganic aerosol cations. Results are reported here from a study designed to investigate the efficiency of deionized water extraction of aerosol nitrate (NO3-) and sulfate from nylon filters. Data were obtained through the conduct of five field experiments at selected IMPROVE sites. Results indicate that the nylon filters provide superior retention of collected fine particle NO3-, relative to Teflon filters, and that deionized water extraction (with ultrasonication) of collected NO3- and sulfate is as efficient, for the situations studied, as extraction using a basic solution of 1.7 mM sodium bicarbonate and 1.8 mM sodium carbonate.  相似文献   

5.
In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 microm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38-99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1-1 microm. In this size range, ESP and baghouse collection efficiencies are 85.79-98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.  相似文献   

6.
ABSTRACT

A novel two-stage wet electrostatic precipitator (ESP) has been developed using a carbon brush pre-charger and collection plates with a thin water film. The electrical and particle collection performance was evaluated for submicrometer particles smaller than 0.01~0.5 μm in diameter by varying the voltages applied to the pre-charger and collection plates as well as the polarity of the voltage. The collection efficiency was compared with that calculated by the theoretical models. The long-term performances of the ESP with and without water films were also compared in tests using Japanese Industrial Standards dust. The experimental results show that the carbon brush pre-charger of the two-stage wet ESP had approximately 10% particle capture, while producing ozone concentrations of less than 30 ppb. The produced amounts of ozone are significantly lower than the current limits set by international agencies. The ESP also achieved a high collection rate performance, averaging 90% for ultrafine particles, as based on the particle number concentration at an average velocity of 1 m/sec corresponding to a residence time of 0.17 sec. Higher particle collection efficiency for the ESP can be achieved by increasing the voltages applied to the pre-charger and the collection plates. The decreased collection efficiency that occurred during dust loading without water films was completely avoided by forming a thin water film on the collection plates at a water flow rate of 6.5 L/min/m2 Zukeran, A., Ikeda, Y., Ehara, Y., Matsuyama, M., Ito, T., Takahashi, T., Kawakami, H. and Takamatsu, T. 1999. Two-Stage-Type Electrostatic Precipitator Re-entrainment Phenomena under Diesel Flue Gases. IEEE. Trans. Ind. Appl, 35: 346351. [Crossref], [Web of Science ®] [Google Scholar].

IMPLICATIONS Current two-stage electrostatic precipitators (ESPs) have several technical problems such as a drop in collection efficiencies by small-particle re-entrainment during rapping and corrosion of metallic electrodes of the ESPs by corrosive gases. This paper evaluates a novel two-stage ESP that uses a nonmetallic pre-charger and water film collection plates to avoid the above mentioned problems of other ESPs. This ESP can be used not only for industrial applications but also for residential purposes because it has a high removal performance for fine particles with low ozone generation and maintains its efficiency due to the continuous cleaning of the collection plates with water film.  相似文献   

7.
Abstract

In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 µm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38–99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1–1 µm. In this size range, ESP and baghouse collection efficiencies are 85.79–98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.  相似文献   

8.
The removal efficiency of granular filters packed with lava rock and sand was studied for collection of airborne particles 0.05-2.5 microm in diameter. The effects of filter depth, packing wetness, grain size, and flow rate on collection efficiency were investigated. Two packing grain sizes (0.3 and 0.15 cm) were tested for flow rates of 1.2, 2.4, and 3.6 L/min, corresponding to empty bed residence times (equal to the bulk volume of the packing divided by the airflow rate) in the granular media of 60, 30, and 20 sec, respectively. The results showed that at 1.2 L/min, dry packing with grains 0.15 cm in diameter removed more than 80% (by number) of the particles. Particle collection efficiency decreased with increasing flow rate. Diffusion was identified as the predominant collection mechanism for ultrafine particles, while the larger particles in the accumulation mode of 0.7-2.5 microm were removed primarily by gravitational settling. For all packing depths and airflow rates, particle removal efficiency was generally higher on dry packing than on wet packing for particles smaller than 0.25 microm. The results suggest that development of biological filters for fine particles is possible.  相似文献   

9.
During collection on filter-based aerosol samplers, organic and inorganic aerosol compounds both contribute to positive and negative artefacts, significantly affecting chemical analyses results for single species and PM mass concentrations. Up to now, studies on organic or inorganic artefacts have been conducted in Europe but very scarce data are available for both in a single study.The field study was carried out in Milan, which is located in the Po valley (Northern Italy) one of the major pollution hot spots in Europe. As sampling artefacts depend on many factors, such as filter type, face velocity, sampling duration, and ambient conditions, in this field study two different filter types have been considered (i.e. quartz fibre filters and Teflon filters) for the assessment of both inorganic and organic artefacts during two different seasons (performing also some samplings at different flow-rates).Results showed that positive artefacts due to OC adsorption on quartz filters accounted for 39% of the OC measured concentration in summer, and 23% in winter. Negative artefact due to nitrate volatilisation by the filters was 51% on Teflon and 22% on the quartz filters in summer, and no or negligible losses were observed in winter. A significant improvement in the PM mass comparability obtained in parallel samplings on different filters was obtained taking into account the artefact estimates performed in this study.  相似文献   

10.
The use of activated carbon fiber (ACF) filters for the capture of particulate matter and elemental Hg is demonstrated. The pressure drop and particle collection efficiency characteristics of the ACF filters were established at two different face velocities and for two different aerosols: spherical NaCl and combustion-generated silica particles. The clean ACF filter specific resistance was 153 kg m-2 sec-1. The experimental specific resistance for cake filtration was 1.6 x 10(6) sec-1 and 2.4 x 10(5) sec-1 for 0.5- and 1.5-micron mass median diameter particles, respectively. The resistance factor R was approximately 2, similar to that for the high-efficiency particulate air filters. There was a discrepancy in the measured particle collection efficiencies and those predicted by theory. The use of the ACF filter for elemental Hg capture was illustrated, and the breakthrough characteristic was established. The capacity of the ACF filter for Hg capture was similar to other powdered activated carbons.  相似文献   

11.
Comparisons were made of the levels of six air pollutants—total oxidant, per-oxyacetyl nitrate (PAN), nitric oxide, nitrogen dioxide, carbon monoxide, and particulate matter—outside and inside 11 buildings in the South Coast Basin of California during summer and fall.

Total oxidant levels inside depend upon how much outside air is being brought in and the residence time in the structure. With rapid intake and circulation, levels inside may be two-thirds those outside. With little intake and slow circulation, amounts inside decay to near zero. PAN is more persistent in buildings because it is more stable than ozone but also decays to low levels over an extended period. Oxides of nitrogen and CO are much more stable than oxidant or PAN and when carried into buildings remain until diluted or exhausted.

Particulate matter levels indoors depend largely upon velocity of air movement. Indoor areas where foot traffic was light or which had low ventilation rates had reduced amounts of particulate. Electrostatic precipitators were much more effective than coarse primary filters used in many buildings for removing particulate matter.  相似文献   

12.
Abstract

The removal efficiency of granular filters packed with lava rock and sand was studied for collection of airborne particles 0.05–2.5 μm in diameter. The effects of filter depth, packing wetness, grain size, and flow rate on collection efficiency were investigated. Two packing grain sizes (0.3 and 0.15 cm) were tested for flow rates of 1.2, 2.4, and 3.6 L/min, corresponding to empty bed residence times (equal to the bulk volume of the packing divided by the airflow rate) in the granular media of 60, 30, and 20 sec, respectively. The results showed that at 1.2 L/min, dry packing with grains 0.15 cm in diameter removed more than 80% (by number) of the particles. Particle collection efficiency decreased with increasing flow rate. Diffusion was identified as the predominant collection mechanism for ultrafine particles, while the larger particles in the accumulation mode of 0.7–2.5 μm were removed primarily by gravitational settling. For all packing depths and airflow rates, particle removal efficiency was generally higher on dry packing than on wet packing for particles smaller than 0.25 μm. The results suggest that development of biological filters for fine particles is possible.  相似文献   

13.
ABSTRACT

Because the Federal Reference Method for PM25 specifies the collection of ambient particles on Teflon filters, we have examined the loss of a known volatile species, particulate nitrate, during sampling. Data are presented from two studies in southern California for which parallel samples were collected by different methods. Differences in collected nitrate are modeled using an evaporation model based on the work of Zhang and McMurry. The average nitrate obtained from sampling with Teflon filters was 28% lower on average than that measured by denuded nylon filters. In contrast, cascade impactor samples were within 5% of the denuded nylon filter on average. A simple model is presented that accounts for the particulate nitrate loss from Teflon filters either by scavenging nitric acid and ammonia in the sampler inlet or by heating the filter substrate during sampling. The observed magnitude of loss is explained by any of the following situations: (1) 100% nitric acid and ammonia vapor loss in the inlet, (2) 5 °C heating of the filter substrate above ambient temperature during sampling, or (3) a combination of these factors, such as 50% vapor loss in the inlet and 3 °C heating of the filter.  相似文献   

14.
Abstract

Nylon filters are a popular medium to collect atmospheric fine particles in different aerosol monitoring networks, including those operated by the U.S. Environmental Protection Agency and the Interagency Monitoring of Protected Visual Environments (IMPROVE) program. Extraction of the filters by deionized water or by a basic aqueous solution (typically a mixture of sodium carbonate and sodium bicarbonate) is often performed to permit measurement of the inorganic ion content of the collected particles. Whereas previous studies have demonstrated the importance of using a basic solution to efficiently extract gaseous nitric acid collected using nylon filters, there has been a recent movement to the use of deionized water for extraction of particles collected on nylon filters to eliminate interference from sodium ion (Na+) during ion chromatographic analysis of inorganic aerosol cations. Results are reported here from a study designed to investigate the efficiency of deionized water extraction of aerosol nitrate (NO3 ?) and sulfate from nylon filters. Data were obtained through the conduct of five field experiments at selected IMPROVE sites. Results indicate that the nylon filters provide superior retention of collected fine particle NO3 ?, relative to Teflon filters, and that deionized water extraction (with ultrasonication) of collected NO3 ? and sulfate is as efficient, for the situations studied, as extraction using a basic solution of 1.7 mM sodium bicarbonate and 1.8 mM sodium carbonate.  相似文献   

15.
为了提高绿色阻垢剂聚环氧琥珀酸的阻垢性能,将静电水处理引入到水处理过程中,采用静态阻垢和动态阻垢实验研究了聚环氧琥珀酸在静电水中的阻垢性能。实验结果表明,在2种实验方法中,聚环氧琥珀酸和静电水处理之间都具有协同阻垢作用。静态实验时,聚环氧琥珀酸的阻垢率可提高19.3%;动态实验时,阻垢率提高12.8%。静电水处理能显著提高聚环氧琥珀酸的阻垢性能。  相似文献   

16.
A study of the electrostatic enhancement of collection efficiency of filters pretreated with ionic surfactants has been carried out in controlled conditions with monodisperse aerosols. Cationic surfactant (dimethyl dioctadecylammonium bromide [DDAB]) and anionic surfactant (sodium oleate [SO]) were used to pretreat polypropylene fibrous filters as the positively and negatively charged filters, respectively. The effects of aerosol size, aerosol charge state, face velocity, aerosol type, and relative humidity (RH) were considered to elucidate their influence on the aerosol penetration. Results indicate that penetration through surfactant-pretreated filters was lower than that through untreated filters, and pretreatment of the filter with surfactant was observed not to affect the structure of the filter. The electrofieldmeter direct-measured the very clear electric field of filter when treating ionic surfactants. The results proved that pretreatment with surfactant caused filters to become charged. Comparing penetration through surfactant-pretreated filters with that through untreated filters with neutral aerosol, the penetration reduction factor of the surfactant-pretreated filters was in the range 1.3-2.2. Comparing aerosol penetration through the surfactant-pretreated filters with singly charged aerosol with that through untreated filters with uncharged aerosol indicates that the former decreases by a factor of 1.8-48.8. The surface fiber charges of the DDAB- and SO-pretreated filters were calculated to be 2.02 x 1(-10) C/m and -1.53 x 10(-1) degrees C/m. Moreover, the aerosol penetrations through the surfactant-pretreated filters increased with the face velocity. Surfactant-pretreated filters performed better against solid aerosol than against liquid aerosol. RH has no effect on aerosol penetration through the surfactant-pretreated filters. Regression equations for Coulombic and dielectrophoretic single-fiber efficiencies in terms of the dimensionless parameters could be fitted by the experimental measurements of surfactant-pretreated filters in this work.  相似文献   

17.
通过对置于住宅楼底层室内箱式变压器引起的结构声污染进行调查实测,在对箱式变压器结构声传播进行声学分析基础上,提出了切实可行的防治对策,经实际工程应用验证,效果较好。对机房正上方住房主卧内降噪量为5.0dB,室内夜间噪声降为30.2dB,各层住户夜间烦恼度普遍从非常烦恼或烦恼降为有点烦恼和不大烦恼。这从噪声污染控制的角度证明了变配电房置于住宅楼等噪声敏感建筑物室内底层甚至更高楼层在技术上是可行性的。同时也为杭州市正在试点推广的箱式变压器置于噪声敏感建筑物底层提供了实践依据。  相似文献   

18.
Consumer care products often contain UV filters, organic compounds which absorb ultraviolet light. These compounds may enter surface waters directly (when released from the skin during swimming and bathing) or indirectly via wastewater treatment plants (when released during showering or washed from textiles). Predicted and measured UV filter concentrations were compared in a regional mass balance study for two Swiss lakes: Lake Zurich, a typical midland lake which is also an important drinking water resource, and Hüttnersee, a small bathing lake. Both lakes are extensively used for recreational activities and considerable direct input of UV filters is thus expected. This input was estimated from the number of visitors at swimming areas around the lakes and a survey of the usage of sunscreen products among these visitors. Possible additional indirect input via wastewater treatment plants was not considered in this study. The quantitatively most important UV filters, as indicated by the survey data, ethylhexyl methoxycinnamate, octocrylene, 4-methylbenzylidene camphor, butyl methoxydibenzoylmethane, and benzophenone-3, all lipophilic compounds, were selected for analysis by gas chromatography-mass spectrometry. Concentrations of individual UV filters in water from Lake Zurich were low, ranging from <2 ng l(-1) (detection limit) to 29 ng l(-1), and somewhat higher at Hüttnersee, ranging from <2 to 125 ng l(-1), with the highest concentrations found in summer, consistent with direct inputs to the lakes during this time. The concentrations were clearly lower than predicted from input estimates based on the surveys. This may be in part due to (i) an overestimation of these inputs (e.g. less than the 50% wash-off of UV filters assumed to occur during swimming), and (ii) some removal of these compounds from the lakes by degradation and/or sorption/sedimentation. UV filters were also detected in semipermeable membrane devices (SPMDs) deployed at Lake Zurich and Greifensee, another midland lake, at concentrations of 80-950 ng SPMD(-1), confirming the presence of the compounds in surface waters and indicating a certain potential for bioaccumulation. SPMD-derived water concentrations were in the range of 1-10 ng l(-1) and thus corresponded well with those determined in water directly. No UV filters were detected above blank levels in SPMDs deployed at a remote mountain lake used for background measurements.  相似文献   

19.
An analytical method was developed and tested for the simultaneous determination of chlorothalonil and its main metabolite 4-hydroxychlorothalonil, in airborne samples. High performance liquid chromatography equipped with Ultra-violet detector was used to separate and quantify the analytes. Glass microfibre filters for the collection of the analytes' particles were tested. Solid sorbents, such as Tenax, Florisil, XAD-2 and silica gel, were studied to find out the most suitable material for the collection of the analytes in the gas phase. The results have shown that only chlorothalonil was trapped in the vapor phase with highest results obtained when silica gel was the sorbent of choice. Linearity was demonstrated in a wide concentration range 0.01-10.00 mg L(-1). Recoveries from spiked glass microfibre filters and silica gel cartridges for chlorothalonil and 4-hydroxychlorothalonil were almost quantitative. The quantification limits were calculated to be 8.4 and 19.6 ng m(-3) in air for chlorothalonil and 4-hydroxychlorothalonil, respectively. The two analytes spiked on the GF/A filters and silica gel cartridges were proven to be stable for more than 15 days, at 4degrees C and ambient temperature. The applicability of the present method was demonstrated by the analysis of the chlorothalonil and its metabolite in greenhouse air.  相似文献   

20.
Methods have been developed for calculating the Ringelmann number, opacity, and other optical characteristics of stack plumes from information on particulate properties, concentrations, and system geometry. Such calculations can be used in selecting clean-up equipment to improve stack appearance required to meet Ringelmann number and opacity pollution regulations. Methods were developed for white plumes caused by water drops or crystalline material and for black plumes containing carbon emissions. The Mie theory of light scattering was utilized to calculate plume optical properties which were related to Ringelmann number through psycophysically significant correlations. A computer program was written to perform the Mie theory and related calculations. Graphical methods were developed for plumes with log-probability size distributions composed of water drops, dusts with refractive index of 1.50 or carbon type emissions of refractive index 1.59-0.66i. Agreement of Ringelmann numbers predicted by these techniques and those observed for large stacks is excellent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号