首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 261 毫秒
1.
Coal is one of the major energy resources in China, accounting for approximately 70 % of primary energy consumption. Many environmental problems and human health risks arise during coal exploitation, utilization, and waste disposal, especially in the remote mountainous areas of western China (e.g., eastern Yunnan, western Guizhou and Hubei, and southern Shaanxi). In this paper, we report a thorough review of the environmental and human health impacts related to coal utilization in China. The abundance of the toxic trace elements such as F, As, Se, and Hg in Chinese coals is summarized. The environmental problems (i.e., water, soil, and air pollution) that are related to coal utilization are outlined. The provenance, distributions, typical symptoms, sources, and possible pathways of endemic fluorosis, arsenism, and selenosis due to improper coal usage (briquettes mixed with high-F clay, mineralized As-rich coal, and Se-rich stone coal) are discussed in detail. In 2010, 14.8, 1.9 million, and 16,000 Chinese people suffered from dental fluorosis, skeletal fluorosis, and arsenism, respectively. Finally, several suggestions are proposed for the prevention and treatment for endemic problems caused by coal utilization.  相似文献   

2.
The estimated daily intakes (EDIs) of six trace elements (Cu, Zn, Pb, Cd, Hg, and As) in vegetables (leafy vegetable, i.e., bok choy, fruit vegetables, i.e., cucumber and tomato, and other categories, i.e., mushroom, kidney bean, and potato), cereals (rice and wheat flour), and meats (pork, mutton, and beef) most commonly consumed by adult inhabitants of Qiqihar, Northeastern China, were determined to assess the health status of local people. The average EDIs of Cu, Zn, Pb, Cd, Hg, and As were with 20.77 μg (kg bw)?1 day?1 of Cu, 288 μg (kg bw)?1 day?1 of Zn, 2.01 μg (kg bw)?1 day?1 of Pb, 0.41 μg (kg bw)?1 day?1 of Cd, 0.01 μg (kg bw)?1 day?1 of Hg, and 0.52 μg (kg bw)?1 day?1 of As, respectively, which are below the daily allowance recommended by FAO/WHO. However, the maximum EDIs of Pb and Cd were 4.56 μg (kg bw)?1 day?1 and 1.68 μg (kg bw)?1 day?1, respectively, which are above the recommended levels [i.e., 3.58 μg (kg bw)?1 day?1 for Pb and 1.0 μg (kg bw)?1 day?1 for Cd] by FAO/WHO. This finding indicates that the potential health risk induced by daily ingestion of Pb and Cd for the local residents should receive a significant concern. Similarly, we detected elevated Pb and Cd concentrations, i.e., with average of 13.58 and 0.60 mg kg?1 dw, respectively, in the adult scalp hairs. Consumption of rice, potato, bok choy, and wheat flour contributed to 75 and 82% of Pb and Cd daily intake from foodstuffs. Nevertheless, human scalp hair is inappropriate biological material for determination of the nutritional status of trace elements in this region.  相似文献   

3.
Because detrimental effects of exposure to lead (Pb) on human health have been observed, we previously investigated concentrations of Pb in water supplies and blood of adult residents of Riyadh, Saudi Arabia. The objectives of the present study were to: (1) examine seasonal rates of deposition of Pb in dust in several areas of Riyadh city, (2) measure concentrations of Pb in both outdoor and indoor dust, (3) compare concentrations of Pb in dust in Riyadh with those reported for other cities, and (4) quantify Pb in blood of children living in Riyadh. Mean, monthly deposition of PB in outdoor dust was 4.7 × 101 ± 3.6 tons km?2, with a mean Pb concentration of 2.4 × 102 ± 4.4 × 101 μg/g. Mean, monthly deposition of Pb in indoor dust was 2.7 ± 0.70 tons km?2, with a mean concentration of 2.9 × 101 ± 1.5 × 101 μg Pb/g. There was a significant (P < 0.01) correlation between concentrations of Pb in outdoor and indoor dust. There was no correlation between concentrations of Pb in indoor dust and that in blood of children of Riyadh, whereas there was a weakly significant (P < 0.05) correlation between concentrations of Pb in outdoor dust and that in blood of children. The mean (±SD) concentration of Pb in blood of children in Riyadh was 5.2 ± 1.7, with a range of 1.7–1.6 × 101 μg/dl. Concentrations of Pb in blood of 17.8 % of children in Riyadh were greater than 10 μg/dl, which is the CDC’s level of concern.  相似文献   

4.
In this study, the role of aquaculture activity as a source of selected metals was analyzed. Significant differences in element content between cultured (Dicentrarchus labrax, Sparus aurata) and wild fishes as well as between fish muscle and their feed were detected. Higher concentrations of trace elements (i.e., As, Cu, Hg, Se) in wild fish tissues in comparison with cultured ones indicate additional sources of metals beside fish feed as natural and/or anthropogenic sources. Generally, mean Cd, Cu, Pb, Se, and Zn concentrations in cultured (0.016, 1.79, 0.14, 0.87, and 34.32 μg/g, respectively) and wild (0.011, 1.97, 0.10, 1.78, and 23,54 μg/g, respectively) fish samples were below the permissible levels, while mean As (2.57 μg/g in cultured, 4.77 μg/g in wild) and Cr (5.25 μg/g in cultured, 2.92 μg/g in wild) values exceeded those limits. Hg values were lower in cultured (0.17 μg/g) and higher in wild (1.04 μg/g) fish specimens. The highest elemental concentrations were observed in almost all fish samples from Kor?ula sampling site. The smallest cultured sea basses showed As (4.01 μg/g), Cr (49.10 μg/g), Pb (0.65 μg/g), and Zn (136 μg/g) concentrations above the recommended limits; however, values decreased as fish size increased. Therefore, the majority of metal concentrations in commercial fishes showed no problems for human consumption. Also calculated Se:Hg molar ratios (all >1) and selenium health benefit values (Se-HBVs) (all positive) showed that consumption of all observed fishes in human nutrition is not risk.  相似文献   

5.
This is the first report on Pb in medicinal herbs from Jordan. Medicinal herbs may present a health risk due to the presence of toxic metals. Seventy-nine dry medicinal plant samples were collected from herbalist shops in Jordan. The plants were digested with acids and analyzed for total Pb concentration using atomic absorption spectrometry. Mean Pb concentration was 15.9 μg/g on a dry weight basis. Our results show that Pb concentrations in Jordan medicinal plants are higher than published data in other countries. The highest level of 33.4 μg Pb/g was determined in Inula viscosa, and the lowest level of 3.0 μg Pb/g was found in Nigella sativa. Calculated daily intakes of Pb of most analyzed herbs were high; most of them are higher than recommended values by the world health organization (WHO). Fortunately, the herbs that contain the highest Pb levels are the less commonly used medicinal herbs in Jordan. The mean Pb levels in the most commonly, commonly and less commonly used herbs in Jordan are 13.9, 13.1 and 16.9 μg Pb/g, respectively. The average dietary intake of Pb through a mixture of these medicinal herbs consumption, assuming 5.0 g herbs is consumed daily, is 79.5 μg Pb/day, which is higher than the maximum daily limit allowed by WHO. We conclude that most of the medicinal plants consumed in Jordan contain significant amount of Pb, and therefore, people of Jordan should not consume large amounts of these herbs.  相似文献   

6.
Considering the environmental pollution, food safety is of great concern to the consumers. The present study was conducted to assess the health risk of cadmium (Cd), mercury (Hg), and lead (Pb) through the dietary intake in Zhejiang, China. Eight hundred and sixty two food samples including aquatic products, meat, vegetables, milk and dairy products, and cereal grains were analyzed. Only 2.44 % (Cd), 1.39 % (Hg), and 1.51 % (Pb) of the samples exceeded the maximum allowable concentration set by Chinese Ministry of Health. The average dietary intakes of Cd, Hg, and Pb were estimated to be 0.26, 0.14, and 0.55 μg/kg bw/day, respectively. Compared with the reference doses, the mean exposure of Cd, Hg, and Pb was all less than the tolerable intake value. Only at the 95th percentile level, Cd and Hg exposure exceeded the values of tolerable intakes by 40 and 277 %, respectively. It indicates that there is low health risk to the dietary exposure of Cd, Hg, and Pb for general people in Zhejiang province, China.  相似文献   

7.
The junction area of Yunnan, Guizhou, and Sichuan provinces is the heaviest coal-burning endemic fluorosis zones in China. To better understand the pathogenicity of endemic fluorosis in this area, 87 coal samples from the late Permian outcrop or semi-outcrop coal seams were collected in eight counties of the junction area of Yunnan, Guizhou, and Sichuan provinces. The total fluorine and sulfate content, etc. in the coal was determined using combustion-hydrolysis/fluoride-ion-selective electrode method and ion chromatography, respectively. The results show that the total fluorine concentrations in the samples ranged from 44 to 382 µg g?1, with an average of 127 µg g?1. The average pH of the coals is 5.03 (1.86–8.62), and the sulfate content varied from 249 to 64,706 µg g?1 (average 7127 µg g?1). In addition, the coals were medium- and high-sulfur coals, with sulfur mass fraction ranging from 0.08 to 13.41%. By heating the outcrop coals, HF release from the coal was verified quantitatively without exception, while simulated combustion directly confirmed the release of sulfuric acid (H2SO4). The acid in coal may be in the form of acidic sulfate (\({\text{HSO}}_{4}^{ - }\)/H2SO4) because of a positive relationship between pH and \(p\left( {{\text{SO}}_{4}^{2 - } } \right)\) in the acidic coal. The possible reaction mechanism would be that a chemical reaction between the acid (H2SO4 or \({\text{HSO}}_{4}^{ - }\)) and fluorine in the coal occurred, thereby producing hydrogen fluoride (HF), which would be the chemical form of fluorine released from coal under relatively mild conditions. The unique chemical and physical property of HF may bring new insight into the pathogenic mechanism of coal-burning endemic fluorosis. The phenomenon of coal-burning fluorosis is not limited to the study area, but is common in southwest China and elsewhere. Further investigation is needed to determine whether other endemic fluorosis areas are affected by this phenomenon.  相似文献   

8.
Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (<0.02 ng/g). Concentrations of Hg in stream water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from <0.02 to 0.53 ng/L and were generally elevated compared to the baseline site (<0.02 ng/L). All stream water samples contained concentrations of As (<1.0–6.2 μg/L) and Sb (<0.20–0.37 μg/L) below international drinking water guidelines to protect human health (10 μg/L for As and 20 μg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 μg/L for As and 5.6 μg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052–0.56 μg/g (wet weight), mean of 0.17 μg/g, but only 17 % (9 of 54) exceeded the 0.30 μg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 μg/g fish muscle guideline. Data in this study indicate some conversion of inorganic Hg to methyl-Hg and uptake of Hg in fish on the Paglia River, but less methylation of Hg and Hg uptake by freshwater fish in the larger Tiber River.  相似文献   

9.
A speciation study of Pb and Mn in roadside dust along major roads in Ile-Ife, South Western Nigeria, was investigated. Pb and Mn values obtained by total digestion ranged from 22.23 ± 3.52 to 43.48 ± 3.05 μg/g and 35.93±0.15 to 83.76 ± 0.06 μg/g, respectively. The results of speciation analysis of Pb and Mn in the samples showed that the mean levels of these metals in the various fractions followed the order: organic matter>residual>Fe-Mn>carbonate>exchangeable and organic matter-bound>exchangeable>carbonate-bound>residual>Fe-Mn oxide-bound respectively. The speciation study therefore revealed that most of the Pb and Mn were associated with the organic matter fraction and that they were least available in the exchangeable and Fe-Mn oxide fractions, respectively. The apparent mobility and potential bioavailability for these metals in the road dust was Mn>Pb. There is a significant difference between the means of Pb and Mn in the road dust of the study area at p≤0.05, which strongly suggests that they may not have come from the same source; different sources may be responsible, which may be anthropogenic, such as tyre wear, vehicular emission, brake linings and natural.  相似文献   

10.
Trace metal concentrations were determined in particulate matter (PM10) in ambient air of four purposively selected residential areas in Ibadan, Nigeria namely Bodija market (BM), Ojo Park (OP), Oluyole Estate (OE) and University of Ibadan (UI). PM10 was determined in the morning (7–10 a.m.) and afternoon (2–5 p.m.) for 12 weeks in the dry season months of January–March using a volumetric sampler following standard procedures and levels compared with WHO guideline limits. Glass-fibre filter papers exposed to the particulate matter were digested using appropriate acid mixtures, and the digest analysed for trace metals including Ni, Cr, Mn, Zn, and Pb using ICPMS method and levels compared with WHO limits. Data was analysed using ANOVA and Pearson correlation test at 5 % level of significance. The highest mean PM10 concentrations 502.3 ± 39.9 μg/m3 were recorded in the afternoon period at BM, while the lowest concentration 220.6 ± 69.9 μg/m3 was observed in the morning hours at UI. There was a significant difference between the PM10 levels across the various locations (p < 0.05), and all the levels were higher than WHO limit of 50 μg/m3. The highest levels of Ni, Zn and Pb were recorded at BM, which also had the highest PM10 burden. The trend in Pb levels across the locations was BM > UI > OP > OE with the highest level 5.70 μg/m3 in BM nearly fourfolds WHO limits of 1.5 μg/m3. There was a significant correlation between PM10 and Ni (p < 0.05).Urban communities with increased human activities especially motor traffic recorded both higher levels of PM10 and toxic trace metals. There is need to carry out source apportionment to establish the origin of these trace metals in future studies.  相似文献   

11.
12.
Reactive oxygen species (ROS)-induced DNA damage occurs in heavy metal exposure, but the simultaneous effect on DNA repair is unknown. We investigated the influence of co-exposure of lead (Pb), cadmium (Cd), and mercury (Hg) on 8-hydroxydeoxyguanosine (8-OHdG) and human repair enzyme 8-oxoguanine DNA glycosylase (hOGG1) mRNA levels in exposed children to evaluate the imbalance of DNA damage and repair. Children within the age range of 3–6 years from a primitive electronic waste (e-waste) recycling town were chosen as participants to represent a heavy metal-exposed population. 8-OHdG in the children’s urine was assessed for heavy metal-induced oxidative effects, and the hOGG1 mRNA level in their blood represented the DNA repair ability of the children. Among the children surveyed, 88.14% (104/118) had a blood Pb level >5 μg/dL, 22.03% (26/118) had a blood Cd level >1 μg/dL, and 62.11% (59/95) had a blood Hg level >10 μg/dL. Having an e-waste workshop near the house was a risk factor contributing to high blood Pb (r s  = 0.273, p < 0.01), while Cd and Hg exposure could have come from other contaminant sources. Preschool children of fathers who had a college or university education had significantly lower 8-OHdG levels (median 242.76 ng/g creatinine, range 154.62–407.79 ng/g creatinine) than did children of fathers who had less education (p = 0.035). However, we did not observe a significant difference in the mRNA expression levels of hOGG1 between the different variables. Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels (β Q2 = 0.362, 95% CI 0.111–0.542; β Q3 = 0.347, 95% CI 0.103–0.531; β Q4 = 0.314, 95% CI 0.087–0.557). Associations between blood Hg levels and 8-OHdG were less apparent. Compared with low levels of blood Hg (quartile 1), elevated blood Hg levels (quartile 2) were associated with higher 8-OHdG levels (β Q2 = 0.236, 95% CI 0.039–0.406). Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels.  相似文献   

13.
The relationships between two exposure media, garden soil and house dust, were studied for Pb uptake in Stratoni village in northern Greece, an industrial area of mining and processing of sulphide ore. Lead data for the two media were assessed in terms of total and bioaccessible content, measurement and geochemical variability, and mineralogical composition. It was found that total Pb was enriched in house dust samples by a factor of 2 on average. Total Pb concentration in soil samples had a maximum of 2,040 mg/kg and reached a maximum of 7,000 mg/kg in house dust samples. The estimated variability due to measurement uncertainty was dominated by the sampling process, and the proportion of sampling variance was greater for soil samples, indicating a higher degree of Pb heterogeneity in soil on the given spatial scale of sampling strata. Although the same general spatial trend was observed for both sampling media with decreasing Pb concentration by increasing distance from the ore-processing plant, Pb in dust samples displayed the highest concentrations within a 300–600-m zone from the ore-processing facility. The significant differences which were observed in Pb speciation between the studied media were explained by differences in mineralogical composition of outdoor soil and indoor dust. Lead-enriched Fe and Mn oxides predominated in soil samples while fine galena grains (<10–20 μm diameter) were the major Pb-bearing phase in dust samples. The integrated exposure uptake biokinetic model was used to predict the risk of elevated blood lead levels in children of Stratoni. Model prediction indicated an average probability of 61 % for blood-Pb to exceed 10 μg/dl. The results underline the importance of house dust in risk assessment and highlight the effect of outdoor and indoor conditions on the fate of Pb in the particular environment of Stratoni.  相似文献   

14.
This study aimed to assess soil nutrient status and heavy metal content and their impact on the predominant soil bacterial communities of mangroves of the Mahanadi Delta. Mangrove soil of the Mahanadi Delta is slightly acidic and the levels of soil nutrients such as carbon, nitrogen, phosphorous and potash vary with season and site. The seasonal average concentrations (μg/g) of various heavy metals were in the range: 14 810–63 370 (Fe), 2.8–32.6 (Cu), 13.4–55.7 (Ni), 1.8–7.9 (Cd), 16.6–54.7 (Pb), 24.4–132.5 (Zn) and 13.3–48.2 (Co). Among the different heavy metals analysed, Co, Cu and Cd were above their permissible limits, as prescribed by Indian Standards (Co=17 μg/g, Cu=30 μ g/g, Cd=3–6 μ g/g), indicating pollution in the mangrove soil. A viable plate count revealed the presence of different groups of bacteria in the mangrove soil, i.e. heterotrophs, free-living N2 fixers, nitrifyers, denitrifyers, phosphate solubilisers, cellulose degraders and sulfur oxidisers. Principal component analysis performed using multivariate statistical methods showed a positive relationship between soil nutrients and microbial load. Whereas metal content such as Cu, Co and Ni showed a negative impact on some of the studied soil bacteria.  相似文献   

15.
The concentration, mode of occurrence, and origin of trace elements in the Late Permian coals from the Puan Coalfield, southwestern Guizhou, China, were examined using inductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence (XRF), cold-vapor atomic absorption spectrometry (CV-AAS), ion-selective electrode method (ISE), sequential chemical extraction procedure (SCEP), scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDX), and optical microscope. Results show that minerals in the No. 2 Coal from the Puan Coalfield were mainly made up of epigenetic pyrite of low-temperature hydrothermal fluid origin and kaolinite of detrital terrigenous origin. Elements including As (36.9 μg/g), Cd (10.2 μg/g), Cr (167.3 μg/g), Cu (365.4 μg/g), Hg (2.82 μg/g), Mo (92.6 μg/g), Ni (82.6 μg/g), Pb (184.6 μg/g), Se (6.23 μg/g), Zn (242.3 μg/g), and U (132.7 μg/g) are significantly enriched in the No. 2 Coal from the Puan Coalfield. However, concentrations of trace elements in the other four coals, the No. 1, No. 8, No. 11, and No. 18 Coals, were close to the usual ranges found for Guizhou of China, China, and USA. Results of SEM-EDX and SCEP showed that As, Cd, Hg, Mo, Ni, Pb, and Zn occur mainly in veined pyrite, while Cr, Cu, and U distribute mainly in kaolinite, indicating that the low-temperature hydrothermal fluid and detrital materials of terrigenous origin are the main contributors to the enrichment of these trace elements in the No. 2 Coal.  相似文献   

16.
About 500 samples of coal, pyritic coal balls, pyritic gangue and coal seam gangue were collected from different coal basins and geologic periods of coal formation to determine the arsenic (As) content and distribution pattern in China. The Permian-Carboniferous and Jurassic coals in the North China Plate and Northwest China account for nearly 85% of total Chinese coal reserves and data showed that As content ranged from 0.1 to 94?mg?kg?1, with the majority between 1 and 14.9?mg?kg?1. The As content of some Late Permian coals in Southwest Guizhou Province and stone coal in the South Qinling Mountain area were exceedingly high (30–534?mg?kg?1), but the majority of coal in the Southwest Guizhou Province contained low to medium amounts. Only the coals, which are situated in or near igneous rocks and are not considered a part of Chinese coal reserves, possessed unusually high As content (>30?mg?kg?1). Arsenic was also concentrated in pyritic coal balls and the pyritic gangue of the coal seam with values ranging from 21.5 to 142.46?mg?kg?1 and an average of 69?mg?kg?1 in Shaanxi and 78?mg?kg?1 in Shandong. Arsenic contents in coal gangue in the Northwest and North China Plate is about 0.2–15?mg?kg?1, a little lower than coals in the same seam. Washing gangue (waste from coal washing) generally contained more As than coal, because the washed gangue has more pyrite than the natural gangue (black shale). Washing coal reduced the content of the pyritic sulfur, heavy metals and As. Based on amounts of coal used with different As content in Chinese coal reserves, the average As content of Chinese coals is about 4.5?mg?kg?1.  相似文献   

17.
淮北煤田煤中有机硫的测定与分析   总被引:2,自引:1,他引:1  
以淮北煤田16 个煤样品为研究对象,对每个样品均进行了元素分析,并进行了索氏抽提实验,采用气相色谱-质谱仪对提取液进行测试分析.结果表明,淮北煤田4煤层和5煤层是以低硫煤为主的烟煤,煤中的有机硫主要为含硫多环芳烃(PASHs),其中又以二苯并噻吩及其甲基取代物和苯并萘并噻吩及其甲基,二甲基取代物为主.通过比较相对含量,发现5煤层的PASHs普遍比4煤层高,且PASHs的含量与O/C值成反相关,与煤的变质程度关系密切,煤化程度愈高,煤组成的芳构化程度也愈高,PASHs含量亦愈高.同时还发现当煤中硫含量在0.5%左右时,煤中PASHs含量达最高.  相似文献   

18.
Triclosan (TCS) and triclocarban (TCC) exposures are highly concerned due to their suspected endocrine-disrupting effects. The present study investigated TCS and TCC exposure levels in the general Chinese population by biomonitoring human urine and nail samples. TCS (69–80 %) and TCC (99–100 %) were frequently detected, which demonstrates that the general Chinese population has extensive exposure to these chemicals. The geometric mean (GM) urinary concentrations were 0.40 μg/g creatinine (creat), 95 % confidence interval (CI) 0.30–0.56, for TCS and 0.40 μg/g creat, 95 % CI 0.29–0.56, for TCC. On the other hand, the GM levels of TCS and TCC were 13.57 (5.67 μg/kg) and 84.66 μg/kg (41.50 μg/kg) in fingernail (toenail) samples, respectively, indicating that the levels in fingernails were approximately twice as high as those in toenails. Pearson’s correlation coefficients between the urine and fingernail (toenail) samples were 0.715 (0.614) for TCS and 0.829 (0.812) for TCC. These data suggest that nail samples can be applied to the biomonitoring for TCS and TCC in the general population. We observed that the levels of both chemicals were higher in females than in males for urine and fingernail samples, but no significant differences were found between different genders for either compound in toenails. Nineteen- to 29-year-olds had the highest TCS levels in their nail samples, whereas TCC levels did not differ with regard to age. Region of residence significantly influenced TCS and TCC concentrations in the three biological matrices measured.  相似文献   

19.
Urinary cadmium (UCd) is a good indicator of long-term exposure to cadmium. UCd concentrations resulting from juvenile cadmium exposure in 3 sub-districts of Tak Province, Thailand, were investigated. The target population was divided by gender and into 2 age subgroups: 9–12 and 13–15 years. A total of 748 urine samples were collected and analyzed by spectrophotometer. All samples had UCd of more than 1.0 μg/g creatinine (Cr). Total UCd means among the 3 sub-districts were 1.31, 1.01, and 0.87 μg/g Cr; the Thai population mean is 0.5 μg/g. The difference among the three sub-districts was statistically significant (p < 0.05). Total means for UCd were 1.13 μg/g Cr for boys, 1.00 for girls, 1.01 μg/g Cr for those 9–12 years old, and 1.18 for those 13–15. UCd concentrations were not significantly different between genders and age groups. Likely dietary sources of cadmium exposure for the subject population were surveyed.  相似文献   

20.
The present paper examines the degree of environmental contamination in areas covered by the Natura 2000 programme, located in north-western Poland, with selected heavy metals based on their concentration in target organs of roe and red deer. Lead, cadmium, copper, iron, and zinc concentrations were determined by inductively coupled plasma–atomic emission spectrometry. Residues of lead and cadmium were found in most of the analysed samples of roe and red deer organs The concentration of cadmium in the organs of the animals studied was much higher than that of lead. The median for Pb in liver and kidneys was 0.055 and 0.092 μg/g dry weight (d.w.) in roe deer, and 0.067 and 0.081 μg/g d.w. in red deer, respectively. The median for liver and kidney cadmium was 0.770 and 6.139 μg/g d.w. in roe deer, and 0.422 and 6.365 μg/g d.w. in red deer, respectively. Our study has demonstrated that this area is laden with lead and cadmium. This is evidenced by the fact that maximum permissible levels of these elements in the organs of red and roe deer, which were used as bioindicators of environmental contamination, were exceeded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号