首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Environmental Forensics》2002,3(3-4):341-348
Correlation of crude oils, or refined products, in the environment with suspected sources is typically undertaken through the use of GC and GCMS and in certain cases bulk carbon isotope compositions. However, with crude condensates, or refined products in particular, the absence, or low concentration, of biomarkers precludes their successful use for making unique correlations. An alternative and, sometimes, complimentary technique for correlation of such products is evolving through the use of combined gas chromatography–isotope ratio mass spectrometry (GCIRMS). This approach permits determination of the carbon and hydrogen isotopic composition of individual compounds in the crude oil or refined product to produce isotopic fingerprints for use in correlation studies. In this paper, it is proposed to review applications of GCIRMS to the correlation of various spilled products with their suspected sources in different environments. Whilst not proposing that this technique will replace GC or GCMS; it is proposed that GCIRMS is a very powerful tool to be used in conjunction with GC and GCMS to make such correlations. Although isotopic fractionation has been observed in some of the lighter components such as benzene and toluene, higher carbon numbered compounds, say above C10, do not appear to undergo any significant isotopic fractionation as a result of weathering. Furthermore with refined products, isotopic fractionation of the lighter components has the potential to demonstrate the onset of natural attenuation of refined products in the environment.  相似文献   

2.
The recent controversy over the use of MTBE within gasoline to boost oxygen content and decrease carbon monoxide emissions to the atmosphere has led to a proposed phase-out of this compound by 2002. This paper is a preliminary investigation into the use of gas chromatography isotope-ratio mass spectrometry (GCIRMS) to determine both carbon and hydrogen isotopic compositions of MTBE as a means of differentiating sources of MTBE. Three pure MTBE samples were purchased from chemical distributors. Little variation of the δ13C values were observed although the samples had isotopically distinct δ-D values. Four different methods of obtaining carbon isotope ratios of neat MTBE, MTBE in gasoline, and MTBE in water are described, and the precision and accuracy of each is discussed. The carbon isotopic compositions of MTBE within 10 gasoline samples from three different areas of the United States show a wide range of carbon isotope compositions. This novel method of MTBE analysis could be valuable in forensic investigations.  相似文献   

3.
The recent controversy over the use of MTBE within gasoline to boost oxygen content and decrease carbon monoxide emissions to the atmosphere has led to a proposed phase-out of this compound by 2002. This paper is a preliminary investigation into the use of gas chromatography isotope-ratio mass spectrometry (GCIRMS) to determine both carbon and hydrogen isotopic compositions of MTBE as a means of differentiating sources of MTBE. Three pure MTBE samples were purchased from chemical distributors. Little variation of the i 13 C values were observed although the samples had isotopically distinct i -D values. Four different methods of obtaining carbon isotope ratios of neat MTBE, MTBE in gasoline, and MTBE in water are described, and the precision and accuracy of each is discussed. The carbon isotopic compositions of MTBE within 10 gasoline samples from three different areas of the United States show a wide range of carbon isotope compositions. This novel method of MTBE analysis could be valuable in forensic investigations.  相似文献   

4.
Zero-valent iron (ZVI) permeable-reactive barriers have become an increasingly used remediation option for the in situ removal of various organic and inorganic chemicals from contaminated groundwater. In the present study a process-based numerical model for the transport and reactions of chlorinated hydrocarbon in the presence of ZVI has been developed and applied to analyse a comprehensive data set from laboratory-scale flow-through experiments. The model formulation includes a reaction network for the individual sequential and/or parallel transformation of chlorinated hydrocarbons by ZVI, for the resulting geochemical changes such as mineral precipitation, and for the carbon isotope fractionation that occurs during each of the transformation reactions of the organic compounds. The isotopic fractionation was modelled by formulating separate reaction networks for lighter ((12)C) and heavier ((13)C) isotopes. The simulation of a column experiment involving the parallel degradation of TCE by hydrogenolysis and beta-elimination can conclusively reproduce the observed concentration profiles of all collected organic and inorganic data as well as the observed carbon isotope ratios of TCE and its daughter products.  相似文献   

5.
The identification of unique isotopic, elemental, and molecular markers for sources of combustion aerosol has growing practical importance because of the potential effects of fine particle aerosol on health, visibility and global climate. It is urgent, therefore, that substantial efforts be directed toward the validation of assumptions involving the use of such tracers for source apportionment. We describe here three independent routes toward carbonaceous aerosol molecular marker identification and validation: (1) tracer regression and multivariate statistical techniques applied to field measurements of mixed source, carbonaceous aerosols; (2) a new development in aerosol 14C metrology: direct, pure compound accelerator mass spectrometry (AMS) by off-line GC/AMS (‘molecular dating’); and (3) direct observation of isotopic and molecular source emissions during controlled laboratory combustion of specific fuels. Findings from the combined studies include: independent support for benzo(ghi)perylene as a motor vehicle tracer from the first (statistical) and second (direct ‘dating’) studies; a new indication, from the third (controlled combustion) study, of a relation between 13C isotopic fractionation and PAH molecular fractionation, also linked with fuel and stage of combustion; and quantitative data showing the influence of both fuel type and combustion conditions on the yields of such species as elemental carbon and PAH, reinforcing the importance of exercising caution when applying presumed conservative elemental or organic tracers to fossil or biomass burning field data as in the first study.  相似文献   

6.
The source of crude oils and petroleum products released into navigable waterways and shipping lanes is not always known. Thus, the defensible identification of spilled crude oils and petroleum products and their correlation to suspected sources is a critical part of many oil spill assessments. Quantitative “fingerprinting” analysis, when evaluated using straightforward statistical and numerical analyses, provides a defensible means to differentiate among qualitatively similar oils and provides the best assessment of the source(s) for spilled oils. Polycyclic aromatic hydrocarbon (PAH) and petroleum biomarker concentration data are a particularly useful quantitative measure that can benefit most oil spill investigations. In this paper the strategy and methodology for correlation analysis that relies upon quantitative gas chromatography/mass spectrometry operated in the selected ion monitoring mode (GC/MS-SIM) is demonstrated in a case study involving 66 candidate sources for a heavy fuel oil spill of unknown origin. The strategy includes identification of 19 chemical indices (out of 45 evaluated) based upon PAH's and biomarkers that were (1) independent of weathering; and (2) precisely measured, both of which are determined by statistical analysis of the data. The 19 chemical indices meeting these criteria are subsequently analysed using principal component analysis (PCA), which helps to determine defensibly the “prime suspects” for the oil spill under investigation. The strategy and methodology described, which combines statistical and numerical analysis of quantitative chemical data, can be adapted and applied to other environmental forensic investigations with the objective of correlating any form of contamination to its suspected sources.  相似文献   

7.
The source of crude oils and petroleum products released into navigable waterways and shipping lanes is not always known. Thus, the defensible identification of spilled crude oils and petroleum products and their correlation to suspected sources is a critical part of many oil spill assessments. Quantitative "fingerprinting" analysis, when evaluated using straightforward statistical and numerical analyses, provides a defensible means to differentiate among qualitatively similar oils and provides the best assessment of the source(s) for spilled oils. Polycyclic aromatic hydrocarbon (PAH) and petroleum biomarker concentration data are a particularly useful quantitative measure that can benefit most oil spill investigations. In this paper the strategy and methodology for correlation analysis that relies upon quantitative gas chromatography/mass spectrometry operated in the selected ion monitoring mode (GC/MS-SIM) is demonstrated in a case study involving 66 candidate sources for a heavy fuel oil spill of unknown origin. The strategy includes identification of 19 chemical indices (out of 45 evaluated) based upon PAH's and biomarkers that were (1) independent of weathering; and (2) precisely measured, both of which are determined by statistical analysis of the data. The 19 chemical indices meeting these criteria are subsequently analysed using principal component analysis (PCA), which helps to determine defensibly the "prime suspects" for the oil spill under investigation. The strategy and methodology described, which combines statistical and numerical analysis of quantitative chemical data, can be adapted and applied to other environmental forensic investigations with the objective of correlating any form of contamination to its suspected sources.  相似文献   

8.
The stable carbon isotope values of tetrachloroethene (PCE) and its degradation products were monitored during studies of biologically enhanced dissolution of PCE dense nonaqueous phase liquid (DNAPL) to determine the effect of PCE dissolution on observed isotope values. The degradation of PCE was monitored in a 2-dimensional model aquifer and in a pilot test cell (PTC) at Dover Air Force Base, both with emplaced PCE DNAPL sources. Within the plume down gradient from the source, the isotopic fractionation of dissolved PCE and its degradation products were consistent with those observed in biodegradation laboratory studies. However, close to the source zone significant shifts in the isotope values of dissolved PCE were not observed in either the model aquifer or PTC due to the constant input of newly dissolved, non fractionated PCE, and the small isotopic fractionation associated with PCE reductive dechlorination by the mixed microbial culture used. Therefore the identification of reductive dechlorination in the presence of PCE DNAPL was based upon the appearance of daughter products and the isotope values of those daughter products. An isotope model was developed to simulate isotope values of PCE during the dissolution and degradation of PCE adjacent to a DNAPL source zone. With the exception of very high degradation rate constants (>1/day) stable carbon isotope values of PCE estimated by the model remained within error of the isotope value of the PCE DNAPL, consistent with measured isotope values in the model aquifer and in the PTC.  相似文献   

9.
During reductive dechlorination of trichloroethene (TCE) by zero-valent iron, stable carbon isotopic values of residual TCE fractionate significantly and can be described by a Rayleigh model. This study investigated the effect of observed reaction rate, surface oxidation and iron type on isotopic fractionation of TCE during reductive dechlorination. Variation of observed reaction rate did not produce significant differences in isotopic fractionation in degradation experiments. However, a small influence on isotopic fractionation was observed for experiments using acid-cleaned electrolytic iron versus experiments using autoclaved electrolytic iron, acid-cleaned Peerless cast iron or autoclaved Peerless cast iron. A consistent isotopic enrichment factor of epsilon = -16.7/1000 was determined for all experiments using cast iron, and for the experiments with autoclaved electrolytic iron. Column experiments using 100% cast iron and a 28% cast iron/72% aquifer matrix mixture also resulted in an enrichment factor of -16.9/1000. The consistency in enrichment factors between batch and column systems suggests that isotopic trends observed in batch systems may be extrapolated to flowing systems such as field sites. The fact that significant isotopic fractionation was observed in all experiments implies that isotopic analysis can provide a direct qualitative indication of whether or not reductive dechlorination of TCE by Fe0 is occurring. This evidence may be useful in answering questions which arise at field sites, such as determining whether TCE observed down-gradient of an iron wall remediation scheme is the result of incomplete degradation within the wall, or of the dissolved TCE plume by passing the wall.  相似文献   

10.
Mass-dependent and mass-independent mercury isotope fractionation potentially generates unique source signatures that can be used to apportion contributions to sediment contamination. This article reviews findings from previous investigations that have used mercury isotopes to identify sources. It also discusses a mass balance mercury isotope fractionation model that simulates changes in isotopic source signatures in aquatic systems caused by natural biogeochemical cycling. According to the model, the extent of source signature alteration depends on chemical speciation, with more labile forms exhibiting greater isotopic fractionation. Apportionment is tractable when differences between δ202Hg of sources are larger than potential changes in isotopic signatures following the release of mercury into the environment.  相似文献   

11.
Wong CS  Muir DC  Mabury SA 《Chemosphere》2003,50(7):903-909
This paper describes a novel analytical methodology using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to measure the 13C/12C ratios of chloroacetic acids (CAAs). CAAs are a major class of environmental pollutants that are widely distributed throughout the world, often at relatively high concentrations, and are of concern due to their toxic effects, particularly on plants. The 13C/12C of CAA reagents was measured by IRMS subsequent to offline combustion. Aqueous solutions of these CAAs were derivatized to the corresponding methyl chloroacetates (MCAAs) with acidic methanol with a known isotopic composition, extracted into pentane, and analyzed by GC/C/IRMS. Measured 13C/12C ratios of derivatized MCAAs were in agreement with calculated values within 1 per thousand for monochloroacetic acid and trichloroacetic acid and within 2 per thousand for dichloroacetic acid, suggesting that methylation and other analytical methodology steps do not isotopically fractionate derivatized MCAAs. 13C/12C ratios of reagent CAAs from different sources had varying isotopic signatures suggesting differences in source carbon and/or production methods. Our results underscore the potential of stable isotopes to serve as tracers of environmental sources of CAAs.  相似文献   

12.
《Environmental Forensics》2013,14(3-4):303-321
In the last decade, PETROBRAS has experienced some significant oil spills cases and the PETROBRAS Research Center has played an important role in the company emergency response program by characterizing the spilled oil, monitoring the affected ecosystem, determining the fate of the oil in the environment, and, subsequently, helping the company in assessing the environmental damage. This paper presents the use of advanced chemical analytical techniques (GC/FID, P&T/GC/PID and GC/MS) in some Brazilian oil spill studies in order to determine fractions and individual petroleum hydrocarbons in different matrices such as water, groundwater, sediment, sand, fish and the spilled oil itself. The spill studies encompassed crude and fuel oil releases on land and coastal ecosystems, related to the incidents in Guanabara Bay (Rio de Janeiro), Barigui and Iguassu Rivers (Parana) and Sao Sebastiao Channel (Sao Paulo). Total petroleum hydrocarbons (TPH), n -alkanes, isoprenoids, unresolved complex mixtures (UCM), volatile monoaromatic compounds--benzene, toluene, ethylbenzene and xylenes (BTEX), parent and alkylated homologues polycyclic aromatic hydrocarbons (PAH), and terpanes and steranes were characterized for determining correlation to the spilled oil and other known oil sources and environmental assessment. Some of the acute ecotoxicity data for water and sediment samples is also presented.  相似文献   

13.
An inter-laboratory round robin analysis of toxaphene in a National Institute of Standards Cod Liver Oil #1588 was carried out. Analysis was performed by GC-ECD, electron capture negative ion GCMS (ECNI GCMS) and electron impact GC/MS in high resolution single ion monitoring mode (EI-HRSIM). Results of the analyses by GC-ECD, ECNI and HRSIM were 4.22±2.45 ppm, 3.95±1.57 ppm, and 2.35±0.06 ppm respectively. Due to the wide inter-laboratory variation in workup, GC conditions, detection method, and quantitation algorithms used, no one set of factors stood out as the cause of the variation in results.  相似文献   

14.
A model, which employs the use of high precision stable lead isotopic analyses, has been developed to estimate the age of hydrocarbon releases. The ALAS Model (Anthropogenic Lead ArchaeoStratigraphy) is based on calibrated, systematic increases in lead isotope ratios of gasolines caused by shifts in sources of lead ores used by the U.S. lead industry, including manufacturers of alkylleads, to more radiogenic Mississippi Valley Type (MVT) deposits. Acquisition of high quality samples (free product, gasoline-impacted soil and groundwater) of known age and subsequent analyses of the hydrocarbon component by high precision lead isotopic analyses by thermal ionization mass spectrometry (TIMS) have produced the ALAS Model calibration curve. Age uncertainties range from - 1 to 2 years for gasoline releases which occurred between 1965 and 1990, the major era of leaded gasoline usage. Analytical methods required to measure lead isotope ratios on ~5 nanograms of lead with precisions and accuracy of < - 0.1% (2 SEM ) are discussed in detail. Published lead isotopic measurements of gasoline-derived anthropogenic lead of samples throughout the United States are used to demonstrate the wide geographic range over which the ALAS Model may be applied. Two representative case studies involving an early 1970s free product release in California and the discrimination of a 1970s from modern unleaded gasoline release in Florida demonstrate the use of the model on single and multiple hydrocarbon releases, respectively, in different geographic regions of the United States. A third investigation focuses on the use of lead isotopes to correlate dissolved phase hydrocarbons with their source, in this case, unleaded (aka low lead) gasoline releases in New Jersey. Dissolved phase hydrocarbons (BTEX/MTBE) are shown to carry the lead isotopic signature of the unleaded gasoline into groundwater, allowing the specific source of the release to be identified. Investigations of lead isotopes as tracers of MTBE in groundwater are ongoing. However, both laboratory and field data indicate MTBE carries the lead isotopic signature of its unleaded gasoline source into groundwater, demonstrating the potential of the lead isotopic system as a discriminant of MTBE sources. Although developed to estimate the age of leaded gasoline releases, the ALAS Model has been successfully applied in studies requiring age dating of jet-A, diesel, kerosene, motor oil, and heating oil. These petroleum distillates are suspected of accidentally acquiring small, yet significant quantities of alkylleads during refining, allowing accurate ALAS Model ages to be determined. When lead levels in these petroleum distillates are within their normal range, typically tens to hundreds of ppb lead, it is possible to use lead isotopic ratios to correlate environmental releases of these products to their source or other releases.  相似文献   

15.
《Environmental Forensics》2002,3(3-4):303-321
In the last decade, PETROBRAS has experienced some significant oil spills cases and the PETROBRAS Research Center has played an important role in the company emergency response program by characterizing the spilled oil, monitoring the affected ecosystem, determining the fate of the oil in the environment, and, subsequently, helping the company in assessing the environmental damage. This paper presents the use of advanced chemical analytical techniques (GC/FID, P&T/GC/PID and GC/MS) in some Brazilian oil spill studies in order to determine fractions and individual petroleum hydrocarbons in different matrices such as water, groundwater, sediment, sand, fish and the spilled oil itself. The spill studies encompassed crude and fuel oil releases on land and coastal ecosystems, related to the incidents in Guanabara Bay (Rio de Janeiro), Barigui and Iguassu Rivers (Parana) and Sao Sebastiao Channel (Sao Paulo). Total petroleum hydrocarbons (TPH), n -alkanes, isoprenoids, unresolved complex mixtures (UCM), volatile monoaromatic compounds—benzene, toluene, ethylbenzene and xylenes (BTEX), parent and alkylated homologues polycyclic aromatic hydrocarbons (PAH), and terpanes and steranes were characterized for determining correlation to the spilled oil and other known oil sources and environmental assessment. Some of the acute ecotoxicity data for water and sediment samples is also presented.  相似文献   

16.
Concentrations and fluxes of unresolved complex mixture of hydrocarbons (UCM) and polycyclic aromatic hydrocarbons (PAHs) were analyzed for two 210Pb dated sediment cores from the Pearl River Estuary (PRE) and the adjacent northern South China Sea (NSCS). Compound-specific stable carbon isotopic compositions of individual n-alkanes were also measured for identification of the hydrocarbon sources. The historical records of PAHs in the NSCS reflected the economic development in the Pearl River Delta during the 20th century. PAHs in the NSCS predominantly derive from combustion of coal and biomass, whereas PAHs in the PRE are a mixture of petrogenic and pyrogenic in origins. The isotopic profiles reveal that the petrogenic hydrocarbons in the PRE originate predominantly from local spillage/leakage of lube oil and crude oils. The accumulation rates of pyrogenic PAHs have significantly increased, whereas UCM accumulation has slightly declined in the NSCS in the recent three decades.  相似文献   

17.
The aim of this study was to conceive a reactive transport model capable of providing quantitative site-specific enrichment factors for fractionation in 13C isotopic content during sorption. As test compound the model treats vanillin, for which the 13C isotopic content at natural abundance at each of the 8 carbon positions can be measured by quantitative 13C nuclear magnetic resonance spectrometry. This technique determines the isotope ratios with a resolution better than ±1‰ (0.1%) at each carbon position. Site-specific isotope fractionations were recorded in chromatography column experiments with silica RP-18 as stationary phase. The one dimensional reactive transport model accounted for the sorption/desorption behavior of 8 individual 13C-isotopomers and one 12C-isotopomer of vanillin and reproduced satisfactorily the bulk (average over the whole compound) fractionation observed during elution. After model calibration, the enrichment factors were fitted for each carbon site where a significant fractionation was recorded. To show the interest of such a transport model for environmental studies, the model, extended to three dimensions, was exploited to simulate reactive transport in an aquifer. These results show that significant 13C isotope fractionation is expected for 4 out of 8 13C-isotopomers in vanillin, and illustrate that bulk isotope ratios measured by conventional compound specific isotope analysis and mass spectrometry would hardly document significant isotope fractionations in vanillin. It is concluded that modeling of site-specific isotope ratios in molecules is a priori feasible and may help to quantify unknown processes in the environment.  相似文献   

18.
Li Z  Kong S  Chen L  Bai Z  Ji Y  Liu J  Lu B  Han B  Wang Q 《Chemosphere》2011,85(3):494-501
A total of 82 surface soil samples collected from central urban sites, surrounding rural sites, coastal sites and background sites in Tianjin were analyzed for 84 PCB congeners. The mean values of total PCBs concentrations for surrounding rural sites, central urban sites, coastal sites, background sites and the whole Tianjin region were 4.45, 3.20, 12.65, 1.96 and 4.02 ng g(-1), respectively. No "urban fractionation effect" was found in Tianjin, which reflected the influence of local emission sources for PCBs such as industries and township enterprises in surrounding rural sites. In contrast, a "primary fractionation effect" was found in Tianjin region. The PCBs concentrations for whole Tianjin region showed a strong east-west gradient and the percentages of lighter molecular weight PCBs homologs (sum of di- to tetra-PCBs) to the total PCBs concentrations increased from east to west. The seven indicator PCBs concentrations were well correlated with the total PCBs concentrations with the correlation coefficients as 0.76 for Tianjin region and 0.74 for central urban sites, respectively. Predominant PCB homolog groups were penta- and tri-PCBs for Tianjin region. 10 dioxin-like PCBs concentrations were well correlated with total PCBs concentrations for all the sampling sites (R=0.79, P<0.0001). The TEQ concentrations for 10 dioxin-like PCBs were 5.3424 ng kg(-1) for Tianjin region and showed a strong east to west gradient. The spatial distribution of PCBs levels, homolog composition patterns and TEQ concentrations were all obviously influenced by local emission sources for PCBs in the east part of Tianjin region.  相似文献   

19.
Conrad R  Klose M  Claus P 《Chemosphere》2002,47(8):797-806
In anoxic rice fields methane is produced by either reduction of CO2 or cleavage of acetate. We measured the delta 13C-values of CH4 and CO2, acetate and organic carbon during time course experiments with anoxic methanogenic soil and root samples and used these values to calculate the fractions of CH4 (and acetate) produced from CO2 reduction. Comparison with radiotracer and/or inhibitor studies constrained the kinetic fractionation factors used for calculation. The fractionation factors for the conversion of CO2 to CH4 and of acetate to CH4 were on the order of alpha = 1.07 (epsilon = -70%) and epsilon > or = - 20%, respectively. The pathway of CH4 production changed with time of anoxic incubation. Anoxic slurries of rice field soil first produced CH4 predominantly (>50%) from CO2, then predominantly (>80%) from acetate and finally (after about one month) according to the theoretically expected ratio (33% CO2 and 67% acetate). Anoxic rice roots, on the other hand, initially produced CH4 exclusively from CO2, followed by contribution of acetate of about 40-60%. Rice roots also produced acetate that partially originated (< or = 1 30%) from reduction of CO2 as determined by calculation of isotopic fractionation using fractionation factors from the literature. The results demonstrate that there is quite some variability in pathways of CH4 production, and also indicate that isotopic fractionation factors may be different in different habitats and change with time.  相似文献   

20.
Nitrate is one of the most common contaminants in shallow groundwater, and many sources may contribute to the nitrate load within an aquifer. Groundwater nitrate plumes have been detected at several ammunition production sites. However, the presence of multiple potential sources and the lack of existing isotopic data concerning explosive degradation-induced nitrate constitute a limitation when it comes to linking both types of contaminants. On military training ranges, high nitrate concentrations in groundwater were reported for the first time as part of the hydrogeological characterization of the Cold Lake Air Weapons Range (CLAWR), Alberta, Canada. Explosives degradation is thought to be the main source of nitrate contamination at CLAWR, as no other major source is present. Isotopic analyses of N and O in nitrate were performed on groundwater samples from the unconfined and confined aquifers; the dual isotopic analysis approach was used in order to increase the chances of identifying the source of nitrate. The isotopic ratios for the groundwater samples with low nitrate concentration suggested a natural origin with a strong contribution of anthropogenic atmospheric NOx. For the samples with nitrate concentration above the expected background level the isotopic ratios did not correspond to any source documented in the literature. Dissolved RDX samples were degraded in the laboratory and results showed that all reproduced degradation processes released nitrate with a strong fractionation. Laboratory isotopic values for RDX-derived NO(3)(-) produced a trend of high delta(18)O-low delta(15)N to low delta(18)O-high delta(15)N, and groundwater samples with nitrate concentrations above the expected background level appeared along this trend. Our results thus point toward a characteristic field of isotopic ratios for nitrate being derived from the degradation of RDX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号