首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 70 毫秒
1.
汉江下游突发“水华”的调查研究   总被引:27,自引:4,他引:27  
对1992年春汉江下游水体暴发“水华”进行了调查研究,对“水华”的特征,产生的原因以及对策,建议等进行了分析、探讨。结果表明,其直接原因是以小环藻为主的硅藻的急剧增殖造成的。  相似文献   

2.
随着我国南水北调中线工程(简称“中线工程”)于2014年底正式通水运行,科学识别调水前后汉江下游水生态环境特征与响应规律,是国家重大水利工程优化调度的迫切管理需求.基于系统收集的2010—2017年汉江下游水文、气象、水质及水生态数据匹配资料,利用多种数据模型方法识别了中线工程调水前后汉江下游主要环境要素特征和响应规律,探索了导致河流生态退化的关键驱动因子及其贡献.结果表明:①中线工程开通后,受丹江口水库下泄流量减少的影响,汉江下游多年平均流量下降了11.5%,流量年内分配趋于不均匀,流量变幅增大,人类活动对汉江下游径流过程的影响更为显著.②调水后汉江下游ρ(TP)、ρ(TN)减小,武汉段ρ(Chla)和藻密度显著上升,汉江下游水华的发生对水文过程改变更加敏感.③基于GAM模型(广义相加模型)的相关分析,调水前后影响汉江下游藻密度变化的关键因子是流量和ρ(TP),调水前贡献率分别为27.7%和20.5%,调水后贡献率分别为65.4%和20.5%,调水后汉江下游流量对藻密度变化的贡献率显著升高,说明上游调水引起的汉江下游流量减小对水华暴发的影响十分明显,而TP等营养盐的影响相对减弱.   相似文献   

3.
基于2015~2019年汉江中下游水文,水环境和水生态数据,采用主成分分析与冗余分析识别了河流藻华暴发防控的关键因子,拟合得到其调控阈值,然后,使用断面通量法和流速抑制法推求了抑制河流藻类水华暴发的生态流量.结果表明:汉江中下游藻类水华主要发生在枯水期,枯水期藻类优势种群为硅藻,小环藻为优势种,丰水期绿藻门和硅藻门是优势种群,小球藻为优势种.流速是影响汉江藻类生长的主控因子,当流速超过0.462m/s时,流速继续增大将抑制藻类生长.汉江中下游枯水期控制藻类水华的生态流量:沙洋断面流量为890m3/s,潜江断面流量为918m3/s,仙桃断面流量为953m3/s,汉川断面流量为1075m3/s.  相似文献   

4.
人类活动干扰下的水环境过程演变是当前全球水安全面临的难点问题.汉江作为南水北调中线工程的重要影响区和水源区,在气候变化和人类活动双重影响下近十几年来水华频繁暴发,科学辨析土地利用类型影响下的汉江水环境质量演变特征,对于政府制定和实施水污染防治政策具有重要的现实意义.基于2011—2018年汉江中下游8个监测站点的7个主要水质指标〔pH、ρ(DO)、ρ(CODMn)、ρ(BOD5)、ρ(NH3-N)、ρ(TP)、ρ(TN)〕448组连续野外监测数据,利用季节性曼肯达尔检验法、相关分析和冗余分析等多种数学统计分析方法,分析了汉江中下游的水质时空演变特征,分析了土地利用类型与水质变化的相关关系.结果表明:①时间特征上,2011—2018年汉江中下游总体水质呈好转趋势,丰水期污染物浓度高于枯水期,2013—2014年出现峰值,2015年以后水质逐渐变好.②空间特征上,水质从汉江中游至下游呈逐渐变差的趋势,由于2014年引江济汉工程的开通,水质在罗汉闸站点及下游有好转趋势.③总体上,农田和城镇用地与污染物浓度均呈显著正相关,最大解释度为0.27;林地、草地与污染物浓度均呈显著负相关,最大解释度为0.31.研究显示,汉江中下游水质有所改善,农田与城镇用地对于汉江中下游水质恶化影响较大,林地、草地等植被覆盖等由于存在一定的水源涵养功能和天然净化能力,可以对水污染起到一定的缓解作用.   相似文献   

5.
汉江水华的影响因素分析及控制方法初探   总被引:2,自引:0,他引:2  
从分析汉江水华的状况、影响因素及其水华发生的参数阈值着手,初步探讨了汉江水华的控制方法。  相似文献   

6.
水利工程背景下河流水华暴发成因分析及模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
研究发现,河流水华暴发的主要驱动因素除受过量营养盐摄入、气候变化导致的气温上升和降雨等限制外,水文情势的影响尤为显著.在高强度人类活动影响下,水利工程开发导致的水文情势改变是否为河流水华加剧的成因之一,是水与环境学科交叉研究亟待探索的一个重要应用基础问题.通过对近10年来国内外在水利工程背景下河流水华暴发成因研究进展的综述,辨识了河流水华发生的"水循环-水环境-水生态"相互作用关系;对考虑水文变化的河流水华预测统计学模型、智能算法和水质水量耦合机理模型等进行了回顾和总结,并提出了基于水循环物理过程联系的生物及生物地球化学过程、社会经济用水与管理人文过程等与河流水华发生相互作用与反馈的水系统论研究体系.当前我国水利工程调水影响区下的河流水华问题研究仍面临着一些难点和挑战:① 过去关于水利工程调水对河流中下游水生态的影响研究多数是基于情景假设和规划条件下的预断,随着近年来我国多个大型水利工程的正式实施运行,当前以实际工程调水为背景(如南水北调、引江济汉工程等)开展水华模拟的研究成果仍然十分有限;② 水利工程调水影响区下的河流水华发生机理尚不明确,当前多数藻类生长模型并没有将流域水循环过程影响纳入考虑因素,对河流生态水文过程作用机理与耦合及定量关系分析方面的研究相对匮乏;③ 现阶段水利工程背景下的河流水华问题研究多停留在定性分析和宏观定量阶段,缺乏基于以水系统理论为导向的水生态系统与河流水文情势共同作用机制的定量化研究.   相似文献   

7.
从分析汉江水华的状况、影响因素及其水华发生的参数阈值着手,初步探讨了汉江水华的控制方法。  相似文献   

8.
为了评估南水北调中线工程对汉江中下游水华的影响,在广泛现场监测、资料收集、调查论证工作的基础上,应用水动力学模型和富营养化动力学模型对汉江水华发生的成因和关键因子进行了分析。汉江水华发生的主要原因有3个:汉江中游进入城区的排污量日趋增大,藻类等生物所需的氮、磷等营养物质严重过量(此乃根本原因);汉江水枯同时长江水位增高使汉江流速变缓,产生类似于湖泊的水流特性;春季气温偏高。在已满足藻类生长需求的营养条件下,流量和流速是制约汉江水华发生的关键(敏感)因子,南水北调中线工程对汉江中下游水华的影响将主要体现在水文因子上。  相似文献   

9.
为了评估南水北调中线工程对汉江中下游水华的影响,根据汉江水华发生的成因和关键因子的分析结果,对汉江水华发生的概率进行了定性分析;应用水动力学模型和富营养化动力学模型以及随机模拟法对汉江水华发生的概率进行了定量计算,并提出了相应的防治对策。结果表明熏南水北调中线工程145×108m3方案实施后将增加汉江水华发生的概率,而引江济汉工程的兴建将极大地减少汉江水华发生的概率。汉江自身的水污染治理是减少水华发生概率的最根本措施。丹江口水库增加枯水期下泄流量和三峡电站减少枯水期下泄流量的联合调度将减小汉江水华发生的概率。  相似文献   

10.
基于复杂网络的城市湖库藻类水华形成识别研究   总被引:1,自引:0,他引:1  
在对城市湖库藻类水华形成机理深入研究的基础上,将提取的影响水华暴发的关键因子总磷(TP)、总氮(TN)、温度(T)、pH值、溶解氧(DO)、光照(I)、叶绿素a浓度(chl_a)作为网络节点,将影响因素间的关系抽象成网络的边,构建了藻类水华形成的有向网络模型.同时,计算了复杂网络的统计特征参数,构建了节点的关键度模型,并进行修正,进而构建了水华形成的复杂网络统计特征参数模型G,对其进行半定量分级,从而实现对水华暴发的有效识别,最后采用北京城市河湖水质的实验数据对模型进行了验证.结果表明,复杂网络统计特征参数G与叶绿素a浓度有显著的相关性,能够较好地表征水华形成过程.  相似文献   

11.
对汉江两度出现“水华”污染的思考   总被引:11,自引:0,他引:11  
通过汉江两次“水华”基本情况的调查,根据当时汉江的水文,地质,水温等数据,分析“水华”产生的直接原因,进而提出对南水北调中线工程的环境影响汉江水资源保护的思考。  相似文献   

12.
汉江中下游硅藻水华形成条件及其防治对策   总被引:2,自引:0,他引:2  
文章总结了汉江中下游五次硅藻水华开始发生的时间、地点及范围、持续时间、浮游植物最高密度以及浮游植物群落结构特点,1992-2000年汉江中下游硅藻水华呈现加重趋势,2000年以后,硅藻水华发生范围有所减小,但发生频度明显增加。在对历次硅藻水华形成的气象条件、水文条件、营养条件和生物条件进行分析的基础上,从控制汉江污染途径、提高汉江中下游硅藻水华预警时效和生态调水方式等方面,提出了防治汉江中下游硅藻水华对策。  相似文献   

13.
分别在2014年春季和夏季三峡库区水华高发期,在库区北岸最大支流澎溪河流域从其河口处逆流而上至回水末端共布置8个采样点,对浮游藻类和环境因子进行了监测,运用数理统计分析手段,对浮游藻类的群落结构及其与环境因子的关系进行了分析.结果表明在4月中旬,除河口样点外,其他采样点水体出现分层,但断面多只有温跃层和滞温层,而没有混合层;上游水体层次间温差高于下游水体;各采样点的水深以及表层水体(水面向下至0.5 m深的水层)的水温、浊度、p H、电导率、溶解氧、叶绿素a、总氮和总磷的空间分布差异显著(ANOVA,P0.05);共检测到浮游藻类25种(属),丰度在(2.76~145.8)×10~4cell·L~(-1)之间,以角甲藻(Ceratium hirundinella)为主要优势藻,鱼腥藻(Anabaena sp.)为次优势藻;上游接近支流来水的样点S7(63.4×10~4cell·L~(-1))和S8(145.8×10~4cell·L~(-1))水华最为严重;硝酸盐氮、水温、p H、电导率和溶解氧是藻类生长的决定因子.在7月下旬,水体分层,趋势与春季相似;各采样点深度和0~0.5 m水层的水温、浊度、氧化还原电位、p H、电导率、叶绿素a、氨氮、硝酸盐氮、总氮和总磷的空间分布仍然差异显著(ANOVA,P0.05);共检测到浮游藻类46种(属),丰度在(9.56~278.88)×10~4cell·L~(-1)之间,总体以席藻(Phormidium sp.)为主要优势藻,鱼腥藻(Anabaena sp.)为次优势藻;下游接近澎溪河河口的样点S2(216.44×10~4cell·L~(-1))、S3(278.88×10~4cell·L~(-1))和S4(108.12×10~4cell·L~(-1))水华严重;浊度、水深、总氮、氧化还原电位、电导率和溶解氧是藻类生长的决定因子.水体分层与水华形成有重要关系.  相似文献   

14.
秦宇  张渝阳  李哲  马健荣 《环境科学》2018,39(4):1578-1588
三峡库区温室气体的排放近年来备受关注.为了揭示三峡库区澎溪河地区水华过程中不同氮磷浓度下藻类生长死亡过程中CH4吸收释放的规律,于2016年4月22日至2016年5月9日,通过添加不同氮磷浓度在澎溪河高阳平湖水域展开野外原位实验.结果表明,在开始实验当日CH4通量从(1.8093±0.0632)μmol·(m2·h)-1到6 d急剧减少至(0.0776±0.0146)μmol·(m2·h)-1.6 d后变化相对较小,相比较于其他水样只添加磷的水样明显有所回升.在本次实验中藻类的生长与死亡受到了不同N、P浓度梯度的影响.N对藻类的生长影响不大,各种指标与未加N、P营养盐的原水基本一致;在适宜的P浓度下,促进藻类的生长.当P浓度过多时,藻类的生长受到抑制.水样中的CH4通量的吸收与释放和添加的硝态氮有关.  相似文献   

15.
汉江中下游水质时空变异与驱动因素识别   总被引:1,自引:1,他引:1  
程兵芬  张远  夏瑞  张楠  张新飞 《环境科学》2021,42(9):4211-4221
汉江是南水北调中线工程主要水源区和影响区,近年来汉江中下游水生态环境质量退化严重,河流水华频繁暴发,科学识别水环境质量时空变异及主要驱动因素成为优化上游调水工程重要管理需求.本研究基于近年汉江水文水质多源数据,综合利用Daniel趋势检验、MK突变分析、K-means聚类、空间相异度和冗余分析等数学方法,系统揭示了汉江中下游水质时空变异特征及关键影响因素.结果表明:①近年汉江干流水质总体较好,总体处于Ⅱ类,中下游部分断面水质为Ⅲ类;多项水质指标多年来总体较好,但总磷和总氮负荷较高,近年10个断面总磷和总氮平均浓度分别处于0.028~0.263mg·L-1和0.630~1.852mg·L-1水平;②时间变化上,Daniel和MK突变结果发现2004~2018年宗关站总磷和总氮年变化趋势不显著,其它多项水质指标也无明显年变化趋势;枯水期主要水质指标总氮、氨氮和五日生化需氧量总体大于丰水期,化学需氧量不同点位呈现出不同的丰枯变化规律,总磷丰水期浓度下降不明显;③空间分布上,K-means聚类和空间相异度结果发现不同断面水质指标变化趋势差异较大,10个水质监测断面总体上可以聚类为3类,上游水质指标最好,中游次之,下游较差;值得注意的是,下游小河等断面多项水质指标均趋于改善,可能与近年来实施的控源减排和清澈养殖等保护行动和措施有关;④在总体较高的氮磷负荷条件下,流量和水温是影响汉江中下游3个分区河流水质指标的重要因素,其中流量在上、下游对水质贡献率较大,水温则在中游贡献率最大.  相似文献   

16.
三峡水库退水期间大宁河“水华”监测探讨   总被引:1,自引:0,他引:1  
三峡水库2011年上半年在大宁河支流白水河发生了以绿藻为主的“水华”,用DS5x便携式多参数水质测定仪进行了现场监测。通过分析发现溶解氧、pH、PCY、叶绿素4项指标成正相关的关系,在水柱监测中发现水温、溶解氧、pH、PCY、叶绿素5项指标从水面往下是递减,且5m以下趋于稳定。基于此,建议今后在水华应急监测中可以直接用现场监测指标来判断水华的严重程度。  相似文献   

17.
三峡库区北岸最大一级支流自三峡大坝2003年蓄水以来,频繁暴发水华,而毗邻的一级支流磨刀溪却少有水华暴发.本文以澎溪河和磨刀溪作为研究对象,于2014年春季和夏季三峡库区水华高发期对两条河流同时采样,对比分析两条河流水体水质以及叶绿素a(Chl-a)含量的时空变化,探索澎溪河水华暴发机理.结果表明:澎溪河Chl-a含量较磨刀溪高,澎溪河春季Chl-a最大值为60.5μg·L~(-1),夏季Chl-a最大值仅7.8μg·L~(-1);磨刀溪Chl-a变化趋势与澎溪河相反,磨刀溪春季Chl-a含量为2.92μg·L~(-1),夏季Chl-a达到7.48μg·L~(-1).澎溪河与磨刀溪春季和夏季节水体温度分层,为温跃层+滞温层模式,而没有混合层;两条河流Chl-a含量均位于水深10 m温跃层.澎溪河春季总氮(TN)、总磷(TP)平均值为2.305 mg·L~(-1)和0.053 mg·L~(-1),夏季为1.673 mg·L~(-1)和0.097 mg·L~(-1);磨刀溪春季为1.875 mg·L~(-1)和0.075 mg·L~(-1),夏季为1.79 mg·L~(-1)和0.054 mg·L~(-1).TN、TP水平均超过了国际公认发生富营养化的阈值;水体氮磷含量与Chl-a浓度并无显著相关性,营养盐并不是藻类生物量的限制性因素.然而在水体电导率的规律方面,两条河却存在很大的差异;春季,磨刀溪上游上层水体(0~10 m)电导率只有下游和长江干流的75%,来自长江干流的回水可覆盖至磨刀溪中游(断面MD03),与Chl-a在此处密集保持一致;夏季电导率和回水区分布与春季相似.与磨刀溪不同,澎溪河春季上游电导率为下游和干流的150%,长江干流回水可到PX04与PX05之间,上游高电导率对应着高Chl-a含量;澎溪河电导率与藻类生长分布表现出显著正相关关系,水体中除N、P营养盐外的其它离子对澎溪河水华暴发起重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号