首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
专性好氧菌降解苯胺废水的动力学研究   总被引:11,自引:0,他引:11  
研究了苯胺在专性好氧菌Ochrobactrumanthropi(人苍白杆菌)作用下的降解规律,讨论苯胺初始浓度及菌种接种量对苯胺降解速率的影响,当初始浓度低于800mg/L时降解速率随浓度增加而加快,高于1000mg/L时则表现出抑制作用;在可降解浓度范围内,该专性好氧菌能将苯胺完全降解而消除其污染;此外,通过对解降过程动力学实验数据的分析计算,得出苯胺的降解反应在不同浓度范围内分别表现为零级或一级关系   相似文献   

2.
好氧颗粒污泥法降解苯胺的特性   总被引:3,自引:0,他引:3       下载免费PDF全文
在控温摇床上采用好氧振荡的方法,在含有苯胺和硝基苯混合废水处理厂的好氧污泥中,驯化降解苯胺的混合微生物.在驯化过程中发现混合微生物逐渐形成了颗粒污泥,采用此颗粒污泥(混合微生物)进行苯胺降解的实验.结果表明,该混合微生物在以苯胺为唯一碳源和氮源的情况下,具有较强的降解苯胺的能力,且最适宜的温度为28℃,最佳的pH值为7.0,当苯胺的起始浓度为600mg/L时,此条件下在18h内被完全降解,混合微生物降解苯胺的速度达到33.6mg/(L·h).  相似文献   

3.
混合培养微生物好氧降解对硝基苯胺的特性研究   总被引:8,自引:0,他引:8  
杨彬  雷乐成 《环境工程》2003,21(3):73-76
通过富集培养 ,获得了降解对硝基苯胺的混合培养微生物。结果表明 ,对硝基苯胺降解速度和混合培养微生物生长对外加碳源有较强的依赖性。在培养液中添加 1 0g L葡萄糖和 1 0g L酵母粉 ,36h内对硝基苯胺去除率可达97%以上 ,对硝基苯胺降解速率可达 4 1mg L·h ;当对硝基苯胺作为培养液生长的唯一碳源、氮源和能源时 ,96h内对硝基苯胺去除率为 34 8% ,降解速率为 0 15mg L·h。  相似文献   

4.
兼性厌氧苯胺降解菌的分离鉴定及其特性   总被引:4,自引:0,他引:4  
从处理印染废水的厌氧折流板反应器(ABR)系统中分离、纯化并筛选出1株能以苯胺为唯一碳氮源进行代谢的兼性厌氧苯胺降解菌株AN29.经过形态、生理生化特征试验和16S rDNA序列分析结果,鉴定菌株AN29为假单胞菌(Pseudomonas sp.),其特性为:降解苯胺的最适温度为37℃,降解苯胺合适的起始pH值为6.5~8.0,可以利用苯胺的最高浓度为4 000mg/L,合适起始浓度为500~2 000mg/L.  相似文献   

5.
硝基苯好氧降解菌筛选及其降解特性   总被引:33,自引:0,他引:33  
针对化学试剂厂和制药厂废水中的硝基苯,经菌源筛选与长期好氧驯化,分离到1株能有效降解硝基苯的菌株Bacillus subilis(枯草芽孢杆菌)。系统研究了其生长条件及降解硝基苯的特性,适宜生长条件: pH为5.0~8.0,温度为30~40℃,NH4Cl浓度为100~200 mg/L,在降解硝基苯的过程中有苯胺生成,这为含低浓度硝基苯废水的生物处理提供了新的途径,即不需要厌氧工艺而直接用好氧技术就可将废水完全无害化。   相似文献   

6.
邻苯二甲酸酯具有内分泌干扰效应,已对环境生物带来了较大的风险.研究了11种邻苯二甲酸酯的好氧生物降解性,及在活性污泥中的去除特性.快速生物降解性测试结果表明邻苯二甲酸二甲酯(dimethyl phthalate,DMP)、邻苯二甲酸二甲氧乙酯(dimethoxyethyl phthalate,BMEP)、邻苯二甲酸二乙酯(diethyl phthalate,DEP)、邻苯二甲酸二丁酯(dibutyl phthalate,DBP)、邻苯二甲酸二异丁酯(diisobutyl phthalate,DIBP)、邻苯二甲酸二戊酯(dinamyl phthalate,DNPP)、邻苯二甲酸二己酯(di-n-hexyl phthalate,DNHP)以及邻苯二甲酸-二(2-乙基)己酯[bis(2-ethylhexyl)phthalate,DEHP]具有快速生物降解性,邻苯二甲酸二壬酯(dinonyl phthalate,DNP)及邻苯二甲酸二环己酯(dicyclohexyl phthalate,DHP)28d生物降解但未通过10 d观察期,邻苯二甲酸二苯酯(diphenyl phthalate,DPP)28 d生物降解率只有43.5%.好氧污泥降解动力学实验中,11种邻苯二甲酸酯(phthalic acid esters,PAEs)降解随时间变化呈典型的一级动力学规律,相关系数r20.96,降解速率常数为0.021~1.11h-1,降解半衰期在0.625~32.7 h之间.在室内好氧污泥模拟实验中,当水力停留时间为12 h时候,DNPP生物去除率为55%~70%,其余10种PAEs去除率大于80%,当水力停留时间为24 h时,所有PAEs去除率都达到90%以上.使用GC/MS分析了PAEs在好氧生化污水处理厂中的暴露水平,结果表明,DMP、DEP、DIBP、DBP以及DEHP在二级出水浓度分别为ND~44.0、ND~12.0、60.4~594、88.0~823和130~728 ng·L~(-1),PAEs在不同STP中的去除率结果差异较大,可能与STP运行工艺和运营水平有关.STP模型预测结果表明,PAEs在STP中的去除过程主要为生物降解,DPP、DNP和DEHP由于较高的lg Koc,可一定程度地被污泥吸附去除.  相似文献   

7.
好氧颗粒污泥及其高效菌株降解苯胺的试验研究   总被引:2,自引:0,他引:2  
项正心  张丽丽  陈建孟 《环境科学》2009,30(11):3336-3341
以苯胺为唯一碳源和氮源,培养降解高浓度苯胺废水的好氧颗粒污泥,该体系对苯胺废水的最高耐受浓度高达6 000mg/L.通过分离纯化,从颗粒污泥体系中获得2株具有不同降解特征的苯胺降解菌adx1和adx3,菌株adx1在降解速率上具有明显优势,而菌株adx3对苯胺的最高耐受浓度高于adx1.上述菌株在降解苯胺过程中均遵循Haldane动力学模型,菌株adx1和adx3的最大比较降解速率分别为0.924 g/(g.h)和0.645 g/(g.h),比生长速率分别为0.487 g/(g.h)和0.440 g/(g.h).16S rDNA测序结果表明adx1和adx3分别属于Pseudomonas和Achromobacter属,与好氧颗粒污泥PCR-DGGE指纹图条带1和4测序结果一致,表明上述菌株分别为好氧颗粒化体系中优势菌群之一.  相似文献   

8.
好氧颗粒污泥能有效降解氯苯胺类化合物,然而,其同步高效降解的性能和基质间作用模式尚不清楚。文章考察好氧颗粒污泥体系降解和矿化氯苯胺类化合物的性能,并深入探讨同步降解过程中,各基质间的促进或抑制效应。实验结果表明,该体系降解单一氯苯胺类化合物遵循合Luong动力学模型,邻氯苯胺(2-CA)、间氯苯胺(3-CA)、对氯苯胺(4-CA)最大降解浓度(Sm)分别为:678.1 mg/L,837.7 mg//L和819.8 mg/L;好氧颗粒污泥体系能够完全降解和矿化总浓度低于750 mg/L的氯苯胺混合物,各化合物间降解速率符合3-CA>4-CA>2-CA。当氯苯胺类化合物共存时,相互间存在竞争性抑制作用,其中,2-CA对3-CA和4-CA的抑制作用明显小于后两者混合的相互抑制作用;对于2-CA的生物降解,3-CA的抑制作用小于4-CA。  相似文献   

9.
由加油站附近污染土壤分离到一株好氧共代谢降解三氯乙烯的菌株Em-1,对其进行了形态学、生理生化和分子鉴定,表明为假单胞菌属。该菌可以利用甲苯为唯一碳源生长,可以以甲苯为生长底物降解三氯乙烯。对Em-1在甲苯中的生长曲线进行了分析,发现经过活化的菌株在甲苯培养基中8 h左右进入对数生长期。在摇瓶水平上进行了连续降解实验,表明甲苯经过24 h即消耗完毕,在含200 mg/L甲苯和50 mg/L三氯乙烯的无机盐培养基中,经168 h培养,三氯乙烯去除率达29.6%。为研究微生物共代谢降解三氯乙烯提供了借鉴。  相似文献   

10.
萘好氧降解菌的筛选及降解特性的初步研究   总被引:1,自引:0,他引:1  
从城市污水处理厂活性污泥中驯化筛选出6个萘降解菌株,这些菌株都能快速降解水杨酸。以萘为唯一碳源,采用瓦勃氏微量呼仪的实验表明,菌株可以不同程度的降解萘。在pH为7.2,萘含量为20mg/L的条件下,菌株生长最好,2d后的萘降解率高达96.5%。  相似文献   

11.
采用循环伏安法考察了苯胺在铂电极上不同浓度、pH值和不同扫描速率等条件下的电化学反应特性。结果表明:在酸性条件下出现明显的氧化峰而中性和碱性条件下没有;在循环初期只有1个氧化峰,峰电势Ep≈1.0V,随着扫描的进行出现2个氧化峰,Ep≈1.0V,0.5V。  相似文献   

12.
苯甲酸和苯胺的微生物降解研究   总被引:2,自引:2,他引:2  
用富集培养法从废水中分别分离到能以苯甲酸和苯胺为唯一碳源和能源的菌株:LS01和AG01。文章以LS01和AG01为菌株研究了其分别降解苯甲酸和苯胺生物降解的适宜条件,包括温度、底物浓度和体系pH。在最适条件下,两种菌株的降解率均能达到85%以上。  相似文献   

13.
苯胺类化合物微生物降解研究进展   总被引:1,自引:0,他引:1  
苯胺类化合物是广泛应用的化工材料,已经造成了严重的环境污染,并危及了人体健康.利用微生物方法处理环境中的污染物质目前备受青睐,它有着物理和化学方法不可比拟的优越性.对苯胺类化合物的微生物降解研究现状进行了系统的综述,包括具有降解苯胺类化合物能力的微生物类群、苯胺类化合物的降解途径及苯胺类化合物降解的影响因素,提出了苯胺类化合物生物降解研究中存在的问题和尚需进一步研究的方面.  相似文献   

14.
耐低温菌JH-9降解苯胺的动力学研究   总被引:1,自引:0,他引:1  
研究耐低温菌JH-9在低温(10 ℃)条件下对不同初始ρ(苯胺)的生物降解情况,并采用反应动力学方程(Monod方程和Haldane方程)拟合其降解过程. 结果表明,菌株JH-9在低温下可降解苯胺,当菌体初始质量浓度一定时,苯胺降解率及平均降解速率主要与初始ρ(苯胺)有关. 初始ρ(苯胺)较低时(<550 mg/L),其在120 h内可完全降解,且平均降解速率随着初始ρ(苯胺)的增加而升高,菌体降解过程中没有出现苯胺毒性抑制作用,遵循Monod方程;当初始ρ(苯胺)较高时(>550 mg/L),苯胺降解率及降解速率均有所下降,由于初始ρ(苯胺)过高对菌体产生了抑制作用,其降解过程以基质抑制型的Haldane方程为主.   相似文献   

15.
Ochrobactrum anthropi 对苯胺的降解特性   总被引:14,自引:1,他引:14  
利用自行筛选驯经的苯胺降解菌人苍白杆菌对影响胺降解的各种主要因素进行了研究。发现降解菌在35℃,PH.下及苯胺初始浓度200-800mg/L的范围内保持高活必在最大降解速率率达到10.05mg.(L.h)^-1。  相似文献   

16.
通过Batch法研究了土壤吸附苯胺的动力学特征;通过土柱试验模拟了苯胺在土壤中的扩散,同样通过土柱试验研究了两种应急处置方法。试验结果表明,土壤吸附苯胺的反应呈现快速反应和慢速反应两个阶段,以快速吸附反应为主;苯胺在土壤中的扩散浓度与扩散深度的关系可用指数方程表征。通过动力学吸附试验和苯胺在土壤中的迁移试验的结果,确定了挖掘距表面层50ram的污染土壤和在污染表面撒粉末活性炭吸附两种有效的应急处置方法。  相似文献   

17.
二氧化氯氧化水中苯胺的反应动力学及机理研究   总被引:10,自引:2,他引:10  
采用高效液相色谱技术检测苯胺浓度随时间的变化,对二氧化氯氧化苯胺的动力学规律进行了系统的研究.结果表明,ClO2氧化苯胺的反应对于ClO2和苯胺均为一级反应,总反应级数为二级.在pH6.86和水温(Tw)287K条件下,二级反应速率常数k值为0.11L·(mol·s)-1,反应活化能为73.11 kJ·mol-1,表明ClO2氧化苯胺的反应在一般水处理条件下即可发生.酸性和碱性条件下反应速率常数k值均较中性条件下大;亚氯酸根ClO2-对反应速率的影响不大CC-MS检测到对氨基酚和偶氮苯2种主要反应中间产物,文中对ClO2氧化苯胺的反应机理进行了初步探讨.  相似文献   

18.
气相色谱氮磷检测器法测定饮用水中19种苯胺类化合物   总被引:1,自引:0,他引:1  
建立了气相色谱氮磷检测器法(GC-NPD)测定饮用水中19种苯胺类化合物。结果表明,19种苯胺类化合物的方法检出限在0.060.45μg/L之间,其线性定量范围均为0.050.45μg/L之间,其线性定量范围均为0.0510.0 mg/L,相关系数(R)在0.995 110.0 mg/L,相关系数(R)在0.995 10.999 8之间;方法平均加标回收率在70.7%0.999 8之间;方法平均加标回收率在70.7%108.2%之间,RSD(n=6)为2.9%108.2%之间,RSD(n=6)为2.9%18.5%。该法灵敏度高,快速准确,用于实际水样测定的结果令人满意。  相似文献   

19.
污水生物处理中抗生素的去除机制及影响因素   总被引:2,自引:1,他引:2  
张翔宇  李茹莹  季民 《环境科学》2018,39(11):5276-5288
环境中的抗生素污染日益严重,其诱导产生的抗生素抗性成为人类健康的重大威胁.通过对世界多地污水处理厂进、出水中抗生素浓度水平的文献调研汇总,发现当前的污水处理工艺不能实现抗生素的有效去除.吸附和生物降解是污水中抗生素的主要去除途径,因此本文深入地分析了吸附的作用机制和不同种类抗生素吸附程度的差异;从生物降解性能、降解菌和降解产物等方面分析抗生素在污水生物处理过程中的生物降解作用;分析讨论了水力停留时间、污泥停留时间、温度和工艺选型(传统活性污泥法、膜生物反应器和生物脱氮工艺)等污水生物处理工艺的运行条件对吸附和生物降解途径的影响,进而解析对抗生素去除效果的影响.菌群组成、生长基质供应情况和微污染物共存情况等因素对污水生物处理中抗生素迁移转化的影响需要更深入地研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号