首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onchidium tumidium showed a triphasic response to anoxia. Twelve hours of anoxic exposure had no effect on the glycogen content in O. tumidium. However, there were significant increases in the alanine, lactate and succinate contents in the anoxic individuals. These were accompanied by a significant decrease in the ATP content. These results suggest that O. tumidium survived the first 12 h of anoxic exposure without increasing the glycolytic flux to compensate for the lower efficiency of ATP production through anaerobic pathways. Indeed, the fructose-2,6-bisphosphate (F-2,6-P2) content and the percentage of phosphofruc-tokinase (PFK) associated with the subcellular particles remain unchanged in O. tumidium exposed to 12 h of anoxia. Hence, a reduction in the metabolic rate of these individuals might have occurred during such a period of anoxia. In contrast, in between 12 and 24 h of anoxic exposure, the glycogen content O. tumidium decreased significantly, and levelled off thereafter. A significant increase in the percentage of PFK associated with the subcellular particles was observed in individuals exposed to 24 h of anoxia. In addition, the F-2,6-P2 content of these anoxic individuals increased significantly. Taken together, these two mechanisms could activate PFK and lead to a greater glycolytic flux. Beyond 24 h of anoxic exposure, survival of O. tumidium must have required considerable suppression of metabolism as accumulation of end products and depletions of glycogen and ATP had reached constant levels.  相似文献   

2.
6-phosphofructo-2-kinase (PFK-2) from the mantle of the sea musselMytilus galloprovincialis Lmk, collected from the Ría de Arosa (NW Spain) in 1990, was purified 550-fold by extraction and sequential affinity chromatography on Affi-gel Blue and ATP-agarose columns. The enzyme was a dimer with a native molecular weight of 100 kilodaltons (KDa) and a subunitM r of 53 KDa. PFK-2 activity is dependent on the presence of Pi. At physiological Pi concentrations, the enzyme exhibits hyperbolic kinetics with both ATP and Fru-6-P, withK m values of 0.62 and 0.37 mM respectively. In vivo, PFK-2 activity is limited by the concentration of Fru-6-P which is low in comparison with theK m for this substrate. Citrate and PEP inhibited PFK-2 activity.  相似文献   

3.
In view of their possible involvement in ammonium assimilation in the coral/algal symbiosis, we have purified two distinct glutamate dehydrogenase isoenzymes from the symbiotic dinoflagellate Symbiodinium microadriaticum (Freudenthal) extracted from the staghorn coral Acropora formosa collected from Magnetic Island, North Queensland, Australia, in 1986–1987. An NADPH-specific glutamate dehydrogenase (GDH) displayed biphasic kinetics with respect to ammonium as the variable substrate; at low substrate concentrations the apparent K m was below 1 mM, whereas at high substrate concentrations the corresponding value was approximately 200 mM. The NADPH-GDH displayed extremely low activity in the direction of glutamate oxidation; together with the kinetic data this suggests a probable role in ammonium assimilation. A second (NADH-specific) GDH was found to have both amination and deamination activities, and presumably functions in vivo in glutamate oxidation. Kinetic constants are reported for both GDH isoenzymes.  相似文献   

4.
Cells ofPhaeodactylum tricornutum Bohlin develop the ability to take up L-lysine when they are deprived of nitrogen (illuminated in nitrogen-free medium), carbon (incubated in darkness) or both. Cells with a developed uptake system take up and accumulate lysine in an unchanged form. Uptake occurs under either aerobic or anaerobic conditions and is dependent on the presence of sodium+ ions (K s Na +=,ca. 10 mM). Some potassium+ ions are necessary for uptake, presumably within the cells, but with potassium+-replete cells, increasing K+ concentration depresses lysine uptake. The lysine-uptake porter also transports L-arginine.K s values are about 1.5 M for lysine and 0.5 M for arginine. It is, however, possible that the uptake system developed by incubating cells in darkness differs from that produced in light; it shows a pronounced pH optimum at pH 8.5, whereas the activity of the light-developed system declines from pH 6.5 to pH 9.0 and correlates well with the concentration of lysine+. The uptake system developed in darkness may also have a higher affinity for lysine. Lysine uptake is not inhibited by 1 mM concentrations of nitrate, nitrate, ammonium, or urea nor by similar concentrations of amphoteric or acidic amino acids.  相似文献   

5.
Metabolism of two abundant echinoderm species constituting 99.6% of the epibenthic megafauna in the Santa Catalina Basin, off southern California, USA was measured at 1 300 m during the 1979 “Bathyal Expedition”. Specimens of the ophiuroid Ophiophthalmus normani and the holothurian Scotoplanes globosa, collected by the submersible “Alvin”, were individually placed in respirometers, and measured in situ for O2 consumption and ammonium excretion rates. For O. normani, weight-specific O2 consumption rates decreased with increasing weight and were of comparable magnitude to rates of deep-sea and shallow-water ophiuroids; excretion rates were highly variable. Population O2 consumption and excretion rates for O. normani (estimated from size-frequency distribution, abundance, and rate regression equations) were 1 129.28 μl O2 m-2 h-1 and 27.30 nmol NH 4 + m-2 h-1. Weight-specific O2 consumption and ammonium excretion rates of S. globosa decreased with increasing weight and were of comparable magnitude to rases of shallow-water holothurians. Population O2 constimption and excretion rates of S. globosa were 1.38 μl O2 m-2 h-1 and 4.86 nmol NH 4 + m-2 h-1. Combined population O2 consumption rates for O. normani and S. globosa are of comparable magnitude to that of the sediment community and plankton in the benthic boundary layer (sediment and overlying 50 m water column) of the Santa Catalina Basin.  相似文献   

6.
The dinoflagellate symbionts (zooxanthellae) present in many reef corals aid in the survival of the symbiotic unit in nitrogen deficient tropical waters by providing additional routes of nitrogen uptake and metabolism. The enzymatic pathway of ammonia assimilation from seawater and the re-assimilation of coral ammonium waste by zooxanthellae was studied by examining the affinity of glutamine synthetase for one of its substrates, ammonia. Glutamine synthetase activity was measured in dinoflagellates of the species Symbiodinium microadriaticum found in symbiotic association with various marine coelenterates. Michaelis-Menten kinetics for the substrate ammonia were determined for freshly isolated dinoflagellates from Condylactis gigantea (apparent NH3 Km=33 M) and for cultured dinoflagellates from Zoanthus sociatus (apparent NH3 Km=60 M). On the basis of the low apparent Kms for NH3, it appears that ammonia assimilation by these symbiotic dinoflagellates occurs via the glutamine synthetase/glutamate synthase pathway. Additionally, the uptake of exogenous ammonium by an intact coelenterate-dinoflagellate symbiosis was strongly inhibited by 0.5 mM methionine sulfoximine, and inhibitor of glutamine synthetase.  相似文献   

7.
The kinetics of ammonium assimilation was investigated in Ulva pertusa (Chlorophyceae, Ulvales) from northeastern New Zealand. Ammonium assimilation exhibited Michaelis–Menten kinetics with a maximum rate of assimilation (V max) of 54 ± 5 μmol g−1 dry weight h−1 and half-saturation constant (K m) of 23 ± 8 μM. In contrast, values for ammonium uptake were considerably higher with a V max of 316 ± 59 μmol g−1 dry weight h−1 and K m of 135 ± 46 μM. At environmentally relevant ammonium concentrations (5 μM), assimilation accounted for most (70%) of the ammonium taken up. Darkness decreased the maximum rate of ammonium assimilation by 83%. We investigated the hypothesis that rates of biosynthetic processes are greater in the early part of the day in Ulva. Consistent with this hypothesis, the maximum rate of ammonium assimilation in U. pertusa peaked in the morning and coincided with low levels of the photosynthetic product sucrose, which peaked in the afternoon. There was a diurnal cycle in the rate of ammonium uptake and assimilation in light and dark, but the amplitude was much greater for assimilation than uptake. Moreover, our data suggest that net ammonium assimilation only occurs during the day in U. pertusa. We suggest that two major roles for diurnal cycles are minimisation of interspecific competition for resources and metabolic costs.  相似文献   

8.
As an initial step in our study of nitrogen metabolism in the coral/algal symbiosis we have purified glutamate dehydrogenase (EC 1.4.1.4) to homogeneity from polyp tissue of the staghorn coral Acropora formosa collected from Magnetic Island (North Queensland) in 1985–1986. The purified enzyme had a specific activity of 78 U mg-1. The native enzyme had a relative molecular weight, M r, of 360 000 (±20 000), and appears to be a hexamer with subunits of M r=56000 (±3 000). Like the enzyme from other coelenterates, the coral glutamate dehydrogenase (GDH) was absolutely specific with respect to the coenzyme substrate (NADP+/NADPH), and was insensitive to allosteric regulation by nucleotides; unlike other coelenterate GDHs, the coral enzyme was absorlutely specific for ammonium as amino group donor in the reductive amination reaction, and major differences in kinetic properties were apparent. Linear Michaelis-Menten kinetics were observed for the substrates a-ketoglutarate, NADPH and NADP+, the K m values being 0.93, 0.11 and 0.03 mM, respectively. However glutamate dehydrogenase displayed biphasic kinetics with respect to l-glutamate and ammonium, indicating two apparent K m values (18 and 81 mM for l-glutamate and 9.2 and 416 mM for ammonium). The enzyme also exhibits Scatchard plots, Hill coefficients and cooperativity indices characteristic of enzymes displaying negative cooperativity.  相似文献   

9.
为明确NH_4~+、 NO_3~-、SO_4~(2-)及金属等组分在水溶性提取液对发光细菌的光抑制过程中所起的作用,参照PM_(2.5)样品提取液浓度,模拟配制与3级以上PM_(2.5)样品提取液中主要组分:硫酸盐、硝酸盐、氨盐相同浓度的溶液,同时选取与PM_(2.5)可溶性提取液发光抑制率相关性较强的铅、锌,配制不同浓度级别模拟溶液,测试各单一组分对发光细菌的发光抑制率及其混合溶液对发光细菌的联合影响效应。基于毒性单位法(TU)、相加指数法(AI)和混合毒性指数法(MTI)评价了混合体系联合影响的作用类型。结果表明,与3~6级PM_(2.5)可溶性提取液中硫酸氨、硫酸氢氨、硝酸氨、硫酸锌和硝酸铅浓度相同的模拟溶液对发光细菌的发光没有抑制作用。不同的评价方法对PM_(2.5)主要组分混合体系联合效应评价结果具有较好的一致性,硫酸氨、硝酸氨、硫酸氢氨混合溶液中,对发光细菌的光抑制均为硫酸氢氨的独立作用,硫酸锌与硝酸铅的混合体系,锌和铅对发光细菌的联合影响效应表现为协同,硫酸氨、硝酸氨、硫酸氢氨与硫酸锌、硝酸铅的多元混合体系呈现协同作用。  相似文献   

10.
To understand the size-resolved aerosol ionic composition and the factors influencing secondary aerosol formation in the upper boundary layer in South Central China, size-segregated aerosol samples were collected using a micro-orifice uniform deposit irnpactor (MOUDI) in spring 2009 at the summit of Mount Heng (1269 m asl), followed by subsequent laboratory analyses of 13 inorganic and organic water-soluble ions. During non- dust-storm periods, the average PM1.8 concentration was 41.8 μg·m^-3, contributing to 55% of the PM10. Sulfates, nitrates, and ammonium, the dominant ions in the fine particles, amounted to 46.8% of the PM1.8. Compared with Mount Tai in the North China Plain, the concentrations of both fine and coarse particles and the ions contained therein were substantially lower. When the air masses from Southeast Asia prevailed, intensive biomass burning there led to elevated concentrations of sulfates, nitrates, ammonium, potassium, and chloride in the fine particles at Mount Heng. The air masses originating from the north Gobi brought heavy dust storms that resulted in the remarkable production of sulfates, ammonium, methane sulfonic acid, and oxalates in the coarse particles. Generally, the sulfates were primarily produced in the form of (NH4)2SO4 in the droplet mode via heterogeneous aqueous reactions. Only approximately one-third of the nitrates were distributed in the fine mode, and high humidity facilitated the secondary formation of fine nitrates. The heterogeneous formation of coarse nitrates and ammonium on dry alkaline dust surfaces was found to be less efficient than that on the coarse particles during non-dust-storm periods.  相似文献   

11.
The activity of glutamine synthetase (GS) was measured in the marine diatom Phaeodactylum tricornutum Bohlin (Strain SME) by a biosynthetic assay, based on -glutamyl hydroxamate synthesis, and referred to as the forwardreaction assay. The effects of pH, temperature and different homogenizing buffer preparations on enzyme activity, linearity of reactions, and substrate-saturation kinetics were investigated. The resultant data provide the basis for establishing optimum experimental conditions for a standard assay. Affinities of P. tricornutum GS for glutamate, ATP and Mg2+ were similar to those recorded elsewhere for a variety of other phytoplankton species using true biosynthetic assays based on release of inorganic phosphate, whereas the affinity for hydroxylamine was two orders of magnitude lower than that for ammonium, with an apparent K m value in the millimolar range. This, together with negative results obtained during earlier attempts to detect GS activity in P. tricornutum using the true biosynthetic assay, indicates that the GS of this alga has a lower affinity for ammonium than that of other phytoplankton species. Dual substrate kinetics demonstrated that apparent K m and V m values for glutamate were directly proportional to the concentration of ATP, thus giving indirect evidence of a correlation between GS activity and the adenylate energy charge. Comparisons between synthetase activities obtained with the optimized forward-reaction assay and transferase activities reported from other studies on various phytoplankton species revealed discrepancies which, to a great extent, probably arise from differences in the growth conditions of the organisms.  相似文献   

12.
To investigate the potential use of Lentinus edodes (L. edodes) residue for Cd2+ adsorption, poly alcohol Na alginate (PVA) was applied to immobilize it. The parameters including contact time, pH, adsorbent dosages, and coexisting metal ions were studied. The suitable pH for immobilized L. edodes was 4?C7 wider than that for raw L. edodes (pH 6?C7). In the presence of Pb2+ concentration varying from 0 to 30 mg·L?1, the Cd2+ adsorption ratios declined by 6.71% and 47.45% for immobilized and raw L. edodes, respectively. While, with the coexisting ion Cu2+ concentration varied from 0 to 30 mg·L?1, the Cd2+ adsorption ratios declined by 12.97% and 50.56% for immobilized and raw L. edodes, respectively. The Cd2+ adsorption isotherms in single-metal and dual-metal solutions were analyzed by using Langmuir, Freundlich, and Dubinin-Radushkevich models. The Cd2+ adsorption capacities (q m) in single-metal solution were 6.448 mg·L?1 and 2.832 mg·L?1 for immobilized and raw L. edodes, respectively. The q m of immobilized L. edodes were 1.850 mg Cd·g?1 in Cd2+ + Pb2+ solution and 3.961 mg Cd·g?1 in Cd2+ + Cu2+ solution, respectively. The Cd2+ adsorption processes subjected to both adsorbents follow pseudo-second-order model. Mechanism study showed the functional group of L. edodes was -OH, -NH, -CO, and PVA played an important role in metal adsorbing. Mining wastewater treatment test showed that PVA-SA-immobilized L. edodes was effective in mixed pollutant treatment even for wastewater containing metal ions in very low concentration.  相似文献   

13.
The phytoplankton uptake and release rates for inorganic phosphate, dissolved organic phosphate and polyphosphate were estimated during 5 cruises on the Chesapeake Bay over a 9-month period. Phosphorus in all pools turned over in several minutes to 100 h, and each soluble pool appeared to contain fractions which were metabolically useful to the phytoplankton. Maximal uptake rates (V m ) for orthophosphate ranged from 0.02 to 2.95 μg-at P (1.h)-1 with half saturation constants (K s ) between 0.09 and 1.72 μg-at P l-1. At low soluble reactive phosphorus concentrations, the uptake rate of trace 32P orthophosphate was initially rapid, but declined after 15 to 60 min incubation. The data suggest that the initial uptake phase was dominated by exchange of 32PO4 for 31PO4 in the membrane transport systems whereas the subsequent phase represented the net incorporation of orthophosphate into phytoplankton cells.  相似文献   

14.
Three different types of soil solution samplers (two ceramic cups and PTFE) were tested in the laboratory to validate their use for collecting soil‐water samples and for monitoring the chemical composition of soil solutions. Interactions between porous materials and chemical solutions were examined under different experimental conditions for several major cations (Ca2+, Mg2+, Na+ and K+) and anions (HCO 3, NO 3, SO4 2‐ and Cl) and for several minor ions (NH+ 4, NO 4, PO4 3‐and B).

The results show that ceramic cups are not inert for bicarbonate, calcium and phosphate ions. Their use is only valid for a limited number of ions such as chloride and nitrate which, however, are the most studied ions in field experiments. PTFE cups have less restrictions although their use in measuring sulphates, phosphates and ammonium presents some problems.

Choosing the appropriate type of cup depends on the objectives. In any case, laboratory experiments must be performed before installation.  相似文献   

15.
The salt-tolerant Staphylococcus cohnii strain, isolated from textile wastewater, has been found effective on decolorizing several kinds of azo dyes with different structures. The optimal conditions for azo dye acid red B (ARB) decolorization by S. cohnii were determined to be pH = 7.0 and 30°C. The decolorization efficiency increased with the increase of the salinity concentration, and around 90% of ARB (100 mg·L?1) could be decolorized in 24 h when the salinity concentration was up to 50 g·L?1. Moreover, the strain could still decolorize 19% of ARB in 24 h even when the NaCl concentration was increased to 150 g·L?1. Meanwhile, the dependence of the specific decolorization rate by S. cohnii on the ARB concentration could be described with Michaelis-Menten kinetics (K m = 585.7mg·L?1, V max = 109.8 mg·g cell?1·h?1). The addition of quinone redox mediator, named 2-hydroxy-1,4-naphthoquinone and anthraquinone-2,6-disulfonate, significantly accelerated the decolorization performance of S. cohnii. Furtherly, the activities of azoreductase (0.55 ??mol·mg protein?1·min?1) and Nicotineamide adenine dinucleotide-dichlorophenol indophenol (NADH-DCIP) reductase (8.9 ??mol·mg protein?1·min?1) have been observed in the crude cell extracts of S. cohnii. The decolorization products of ARB were analyzed by HPLC-MS, and the results indicated the reductive pathway was responsible for azo dye decolorization by S. cohnii.  相似文献   

16.
The regulation of muscle fiber K+ and free amino acid (FAA) concentrations during hypoosmotic stress was investigated in the moderately euryhaline crab Cancer irroratus. After 6 h of exposure to 60% ASW, muscle fiber K+ concentration declined from 185 mM to 140 mM. Following this, the blood glycine levels began to increase, indicating an FAA efflux from the cells. These data indicate that both muscle fiber K+ and FAA contribute to cell volume regulation in C. irroratus. The early release of K+ limits the initial rate of cell hydration. The subsequent efflux of glycine accounts for the volume regulation response of the muscle fibers. The cell volume regulatory system of C. irroratus is a coordinated use of both inorganic ions and FAA.  相似文献   

17.
In a series of multifactorial laboratory experiments, Gracilaria tikvahiae apical segments were grown in an apparatus in which they were exposed simultaneously to 3 simulated current speeds (7.5, 15, 22.5 cm s-1) and a still control, and either 3 ammonium concentrations (<6, 37–39, and 119–136 M) under ample uniform light (ca 200 E m-2 s-1) or 3 light intensities (ca 35, 90, and 270 E m-2 s-1) with uniform surplus ammonium. Growth rates of apical segments were determined in each experiment as well as nitrogen and carbon composition of tissues and fluxes of NH4, NO3/NO2, and PO4 in media. In a supplementary series of field experiments, apical segments of G. tikvahiae weresimultaneously exposed to 2 different regimes of water motion in adjacent chambers at several sites characterized by widely different ammonium regimes. The application of simulated current significantly enhanced growth rates in all experiments which utilized recently collected plants. Generally, this enhancement was fully realized at 7.5 cm s-1, with growth rates tending to plateau above that speed. Growth enhancement by simulated current was independent of ammonium concentration and was considerably reduced at the lowest light intensity. In experiments conducted with plants that had been maintained for several months in aquaria, simulated current failed to enhance growth rates. This suggested that growth responses were at least partly a function of prior conditioning. Growth rates were a direct function of light intensity and an inverse function of ammonium concentration, indicating ammonium inhibition at the higher applied concentrations. Simulated current slightly enhanced rates of ammonium uptake but this did not consistently result in reduced C:N ratios, suggesting that the growth-stimulating effect of relative water motion was attributable to factors other than N uptake. There was evidence of luxury consumption of ammonium. In field experiments, growth rates were not significantly related to exposure to water motion.  相似文献   

18.
Effects of nitrogen addition on the growth of the salt marsh grassElymus athericus were studied under greenhouse conditions. The addition of inorganic nitrogen (in the form of nitrate or ammonium and ranging from 0–24 g N/m2) stimulated the growth ofElymus athericus at the highest addition. Addition of nitrogen led to an increase of the soil nitrate concentrations both in the nitrate and ammonium treated soil in the first period of the experiment, whereas no differences were present at the end of the experiment. Ammonium in the ammonium treatments was transformed to nitrate within 15 days. In another experiment the values of the stable isotope nitrogen-15—expressed as δ15N-in nitrogen compounds used as fertilizer, in salt marsh soil and ofElymus athericus were measured. The δ15N of the N-compounds added (between ?3.2 and +2.6‰) were lower than the soil (ca.+10‰) and plants (ca.+8‰). During growth in water culture the δ15N of the leaves, stems and roots ofElymus athericus decreased from +9‰ to ?1‰. The latter value was close to the °15N of the N-compounds used in the water solution. Addition of N-compounds in soil culture, however, did not lead to such a decrease of the °15N ofElymus athericus. The difference in δ15N between soil nitrogen and the N-compounds added may be too small to be used successfully in ecological studies of nitrogen fluxes in the salt marsh environment.  相似文献   

19.
The substrate analogue [14C]-methylammonium was used to study ammonium/methylammonium uptake by Symbiodinium microadriaticum (zooxanthellae). The value of the Michaelis constant (K m) for the uptake system was approximately 35 M with methylammonium as substrate; ammonium was a competitive inhibitor of methylammonium uptake, and the K m for ammonium uptake (determined as the inhibition constant, K i, for methylammonium) was 6.6 M. Methylammonium uptake by zooxanthellae was light-dependent. Methylammonium uptake rates of zooxanthellae which had been freshly isolated from the hermatypic coral Acropora formosa (0.85±0.05x10-10 mol min-1 cell-1) were lower than those of axenic cultures of the zooxanthellae from Montipora verrucosa (Acroporidae) grown under various nitrogen regimes (1.6 to 12x10-10 mol min-1 cell-1). Maximum uptake rates were found for ammonium-starved cultured M. verrucosa zooxanthellae (10.2 to 12x10-10 mol min-1 cell-1); M. verrucosa zooxanthellae growing with ammonium as nitrogen source and zooxanthellae which had been freshly isolated from A. formosa gave similar and considerably lower uptake rates (0.85 to 1.6x10-1 mol min-1 cell-1). These results suggest that either coral tissue contains sufficient ammonium to repress synthesis of the uptake system of the algal symbionts or, alternatively, there are additional barriers to ammonium transport for zooxanthellae in vivo.  相似文献   

20.
Lessonia nigrescens and Durvillaea antarctica, two large sub-Antarctic brown algae from the southern Chilean coast, were exposed to solar UV radiation in an outdoor system during a summer day (for 11 h) as well as to artificial UV radiation under controlled laboratory conditions at two temperatures (15 and 20 °C) for 72 h. Chlorophyll a fluorescence–based photoinhibition of photosynthesis was measured during the outdoor exposure, while electron transport rates, lipid peroxidation, antioxidant activity and content of phlorotannins were determined at different time intervals during the laboratory exposure. Under natural solar irradiances in summer, both species displayed well-developed dynamic photoinhibition: F v/F m values decreased by 70 % at noon coinciding with the levels of PAR >1,500 μmol m?2 s?1 and UV-B radiation >1 W m?2 and recovered substantially in the afternoon. In treatments including UV radiation, recovery in D. antarctica started already during the highest irradiances at noon. The results from laboratory exposures revealed that (a) elevated temperature of 20 °C exacerbated the detrimental effects of UV radiation on photochemical parameters (F v/F m and ETR); (b) peroxidative damage measured as MDA formation occurred rapidly and was strongly correlated with the decrease in F v/F m, especially at elevated temperature of 20 °C; (c) the antioxidant activity and increases in soluble phlorotannins were positively correlated mainly in response to UV radiation; (d) phlorotannins were rapidly induced but strongly impaired at 20 °C. In general, short-term (2–6 h) exposures to enhanced UV radiation and temperature were effective to activate the photochemical and biochemical defenses against oxidative stress, and they continued operative during 72 h, a time span clearly exceeding the tidal or diurnal period. Furthermore, when algae were exposed to dim light and control temperature of 15 °C for 6 h, F v/F m increased and lipid peroxidation decreased, indicating consistently that algae retained their ability for recovery. D. antarctica was the most sensitive species to elevated temperature for prolonged periods in the laboratory. Although no conclusive evidence for the effect of the buoyancy of fronds was found, the interspecific discrepancies in thermo-sensitivity in the UV responses found in this study are consistent with various ecological and biogeographical differences described for these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号