首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycyclic aromatic hydrocarbons in fuel-oil contaminated soils, Antarctica   总被引:6,自引:0,他引:6  
Where fuel oil spills have occurred on Antarctic soils polycyclic aromatic hydrocarbons (PAH) may accumulate. Surface and subsurface soil samples were collected from fuel spill sites up to 30 years old, and from nearby control sites, and analysed for the 16 PAHs on the USEPA priority pollutants list, as well as for two methyl substituted naphthalenes, 1-methylnaphthalene and 2-methylnaphthalene. PAH levels ranged from 41-8105 ng g-1 of dried soil in the samples from contaminated sites and were below detection limits in control site samples. PAH were detected in surface soils and had migrated to lower depths in the contaminated soil. The predominant PAH detected were naphthalene and its methyl derivatives.  相似文献   

2.
In 1994, New Zealand's only mainland Antarctic base, Vanda Station, was removed from the shores of Lake Vanda, in the McMurdo Dry Valleys region of southern Victoria Land, Antarctica. Residual chemical contamination of the station site has been identified, in the form of discrete fuel spills, locally elevated Pb, Zn, Ag and Cd concentrations in soil and elevated Cu, Ni, Co and phosphate concentrations in suprapermafrost fluids in a gully formerly used for domestic washing water disposal. Pathways for contaminant transfer to Lake Vanda, potential environmental impacts and specific remediation/monitoring options are considered. While some contaminants (particularly Zn) could be selectively leached from flooded soil, during a period of rising lake level, the small area of contaminated soils exposed and low level of contamination suggests that this would not adversely affect either shallow lake water quality or the growth of cyanobacteria. Phosphate-enhanced growth of the latte may, however, be a visible consequence of the minor contamination occurring at this site.  相似文献   

3.
Little effort has been devoted to differentiating between hydrocarbon losses through evaporation and biodegradation in treatability studies of fuel-contaminated Antarctic soils. When natural attenuation is being considered as a treatment option, it is important to be able to identify the mechanism of hydrocarbon loss and demonstrate that rates of degradation are sufficient to prevent off-site migration. Similarly, where complex thermally enhanced bioremediation schemes involve nutrient addition, water management, air stripping and active heating, it is important to appreciate the relative roles of these mechanisms for cost minimisation. Following the loss of hydrocarbons by documenting changes in total petroleum hydrocarbons offers little insight into the relative contribution of evaporation and biodegradation. We present a methodology here that allows identification and quantification of evaporative losses of diesel range organics at a range of temperatures using successively less volatile compounds as fractionation markers. We also present data that supports the general utility of so-called biodegradation indices for tracking biodegradation progress. We are also able to show that at 4 degrees C indigenous Antarctic soil bacteria degrade Special Antarctic Blend fuel components in the following order: naphthalene and methyl-napthalenes, light n-alkanes, then progressively heavier n-alkanes; whereas isoprenoids and the unresolved complex mixture are relatively recalcitrant.  相似文献   

4.
《Chemosphere》1987,16(7):1475-1487
The literature concerning the fate of light hydrocarbon fuel spills on water is reviewed. The review focuses on jet fuels and contains some discussion of gasoline, diesel, marine and kerosene fuel spills. The two major fates of light hydrocarbon spill on water are evaporation and dissolution, although biodegradation, photooxidation and adsorption onto suspended sediments can also be of some importance.  相似文献   

5.
Zhu R  Sun L 《Chemosphere》2005,59(11):1583-1593
Methane fluxes were measured from three exposed tundra sites and four snowpack sites on the Fildes Peninsula in the maritime Antarctic in the summertime of 2002. The average fluxes at two normal tundra sites were −15.3 μg m−2 h−1 and −14.3 μg m−2 h−1, respectively. The fluxes from tundra site with fresh penguin dropping addition showed positive values with the average of 36.1 μg m−2 h−1, suggesting that the deposition of fresh droppings greatly enhanced CH4 emissions from the poor Antarctic tundra during penguin breeding periods. The summertime variation in CH4 flux was correlated with surface ground temperature and the precipitation. The correlation between the flux and PT0, which is the product of the precipitation and surface ground temperature, was quite strong. The diurnal cycle of CH4 flux from the tundra soils was not obtained due to local fluky weather conditions. The fluxes through four snowpack sites were also obtained by the vertical CH4 concentration gradient and their average fluxes were −46.5 μg m−2 h−1, −28.2 μg m−2 h−1, −46.4 μg m−2 h−1 and −17.9 μg m−2 h−1, respectively, indicating that tundra soils under snowpack also consume atmospheric CH4 in the maritime Antarctic; therefore these fluxes could constitute an important part of the annual CH4 budget for Antarctic tundra ecosystem.  相似文献   

6.
Concentration and distribution of PCBs, PCB 11, and PBDEs in both surficial sediment and soil samples, taken from a zone subject to recent accelerated development, were investigated to assess the environmental quality and understand both natural and anthropogenic processes that influence contaminant behaviors. Values of PCB and PBDE are in the lower range of those reported in literature, typical of low impacted coastal zones. This could be due to efficient processes of resuspension and removal. Contaminants in the lagoon showed higher concentrations in sediments from sites close to the city and the outfalls of the industrial area, while soils showed maximum values in the northern samples. In addition, congener patterns and statistical analyses suggest the presence of effective degradation processes, especially for PBDEs, with the exception of the most concentrated samples that may indicate a direct input. PCB 11 is a significant component (up to 18%) in most lagoon sediments. Its presence is strongly associated with fine particles, thus the distribution seems to be driven mainly by the system hydrodynamic and does not trace the sources. Due to evaporation, only flooded agricultural soils show a similar relative abundance of this congener.  相似文献   

7.
Sediment-associated hydrocarbons can pose a risk to wildlife that rely on benthic marine food webs. We measured hydrocarbons in sediments from the habitat of protected sea otters in coastal British Columbia, Canada. Alkane concentrations were dominated by higher odd-chain n-alkanes at all sites, indicating terrestrial plant inputs. While remote sites were dominated by petrogenic polycyclic aromatic hydrocarbons (PAHs), small harbour sites within sea otter habitat and sites from an urban reference area reflected weathered petroleum and biomass and fossil fuel combustion. The partitioning of hydrocarbons between sediments and adjacent food webs provides an important exposure route for sea otters, as they consume ∼25% of their body weight per day in benthic invertebrates. Thus, exceedences of PAH sediment quality guidelines designed to protect aquatic biota at 20% of the sites in sea otter habitat suggest that sea otters are vulnerable to hydrocarbon contamination even in the absence of catastrophic oil spills.  相似文献   

8.
In 1993, a paper was published by Christensen and Larsen that offered a method for determining the age of diesel oil spills in soil (7Ground Water Mount.R . Fall, 142–149). It presented an empirical time-based model of the degradation of diesel fuel in soils using chemical data gathered at petroleum release sites in Denmark and the Netherlands. Now, evaluation of the validity of the application of this work to subsurface petroleum releases in other countries remains.In the U.S.A., investigations assessing date(s) of release of diesel fuel in soils, e.g. age dating of subsurface petroleum contamination, have considerable interest. Litigation-driven scientific investigations with accompanying expert testimony in a court of law are underway. The number of instances where application of the Christensen and Larsen empirical time-based model to petroleum-contaminated properties is growing in the U.S.A.This paper presents two case studies which evaluate the applicability of the Christensen and Larsen empirical time-based model to petroleum-contaminated properties in general. It illustrates the approach using gas chromatographic data from two recently-completed projects evaluating the applicability of the Christensen and Larsen model to a No. 2 fuel oil/diesel fuel surface spill in the U.S.A. Results showed that the application of the model to petroleum-contaminated soils was scientifically valid, provided its applicability was evaluated using hypothesis testing for specific changes in the characteristics of the petroleum hydrocarbon distribution in a number of soil samples collected over time at one site. The paper offers observations on the application of the Christensen and Larsen model to petroleum found in the light non-aqueous phase liquid (LNAPL) phase and groundwater.  相似文献   

9.
In 1993, a paper was published by Christensen and Larsen that offered a method for determining the age of diesel oil spills in soil (Christensen and Larsen, 1993 Ground Water Mount. R . Fall , 142-149). It presented an empirical time-based model of the degradation of diesel fuel in soils using chemical data gathered at petroleum release sites in Denmark and the Netherlands. Now, evaluation of the validity of the application of this work to subsurface petroleum releases in other countries remains. In the U.S.A., investigations assessing date(s) of release of diesel fuel in soils, e.g. age dating of subsurface petroleum contamination, have considerable interest. Litigation-driven scientific investigations with accompanying expert testimony in a court of law are underway. The number of instances where application of the Christensen and Larsen empirical time-based model to petroleum-contaminated properties is growing in the U.S.A. This paper presents two case studies which evaluate the applicability of the Christensen and Larsen empirical time-based model to petroleum-contaminated properties in general. It illustrates the approach using gas chromatographic data from two recently-completed projects evaluating the applicability of the Christensen and Larsen model to a No. 2 fuel oil/diesel fuel surface spill in the U.S.A. Results showed that the application of the model to petroleum-contaminated soils was scientifically valid, provided its applicability was evaluated using hypothesis testing for specific changes in the characteristics of the petroleum hydrocarbon distribution in a number of soil samples collected over time at one site. The paper offers observations on the application of the Christensen and Larsen model to petroleum found in the light non-aqueous phase liquid (LNAPL) phase and groundwater.  相似文献   

10.
Zhu R  Sun L  Ding W 《Chemosphere》2005,59(11):1667-1675
The nitrous oxide emissions were measured at three tundra sites and one snowpack on the Fildes Peninsula in the maritime Antarctic in the summertime of 2002. The average fluxes at two normal tundra sites were 1.1 ± 2.2 and 0.6 ± 1.7 μg N2O m−2 h−1, respectively. The average flux from tundra soil site with penguin dropping addition was 3.7 ± 2.0 μg N2O m−2 h−1, 3–6 times those from the normal tundra soils, suggesting that the deposition of fresh droppings enhanced N2O emissions during penguin breeding period. The summer precipitation had an important effect on N2O emissions; the flux decreased when heavy precipitation occurred. The diurnal cycle of the N2O fluxes from Antarctic tundra soils was not obtained due to local fluky weather conditions. The N2O fluxes through four snowpack sites were obtained by the vertical N2O concentration gradient and their average fluxes were 0.94, 1.36, 0.81 and 0.85 μg N2O m−2 h−1, respectively. The tundra soils under snowpack emitted N2O in the maritime Antarctic and increased local atmospheric N2O concentrations; therefore these fluxes could constitute an important part of the annual N2O budget for Antarctic tundra ecosystem.  相似文献   

11.
不同类型海岸的溢油清理方法   总被引:1,自引:0,他引:1  
世界石油资源分布和需求的不均衡性,促进了海上石油工业和石油运输业的快速发展,同时也增加了溢油事故的几率.海上溢油污染问题日趋严重,溢油污染对海洋环境、生态、资源、经济及人类生产生活等造成了巨大的影响,日益引起社会各界的关注.海岸溢油污染清理实践表明,正确的溢油清理方案的制定应综合考虑海岸的敏感性指数、溢油的类型、清理方法可能带来的危害以及支际可操作程度等.对包括盐沼地海岸和红树林海岸,沉积海岸,以及岩石海岸三类典型海岸的国内外现有海岸溢油污染清理技术进行了详细的综述,以期为我国的海岸带管理和溢油应急计划的制订提供技术参考.  相似文献   

12.
Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAHLMW4) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAHLMW4 within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals.  相似文献   

13.
Throughout several coastal regions in the Mediterranean where rainfalls rarely exceed 650 mm per year municipal treated wastewater can be conveniently reused for soil irrigation. Where the coastal aquifer supplies large populations with freshwater in such area, an assessment of ground water quality around spreading sites is needed. In this study, the efficacy of natural filtration on nitrogen degradation in wastewater spreads on the soil covering the Salento (Southern Italy) fractured limestone was quantified by using laboratory tests and field measurements. In the laboratory, effluent from municipal wastewater treatment plants was filtered through a package of fractures made by several slabs of limestone. An analysis of wastewater constituent concentrations over time allowed the decay rates and constants for nitrogen transformation during natural filtration to be estimated in both aerated and non-aerated (i.e., saturated) soil fractures. A simulation code, based on biodegradation decay constants defined in the laboratory experiments, was then used to quantify the total inorganic nitrogen removal from wastewater injected in an aquifer in the Salento region (Nardò). Here the water sampled in two monitoring wells at 320 m and 500 m from the wastewater injection site and downgradient with respect to groundwater flow was used to verify the laboratory nitrification and denitrification rates.  相似文献   

14.
GOAL, SCOPE AND BACKGROUND: This glasshouse study is aimed at evaluating tropical plants for phytoremediation of petroleum hydrocarbon-contaminated saline sandy subsurface soils. Tropical plants were selected for their ability to tolerate high salinity and remove No. 2 diesel fuel in coastal topsoil prior to further investigation of the phytoremediation feasibility in deep contaminated soils. The residual petroleum-hydrocarbon contaminant at the John Rogers Tank Farm site, a former petroleum storage facility, at Hickam Air Force Base, Honolulu, Hawaii, is located in a coastal area. It lies below a layer of silt in the subsurface, in loamy sand characterized by moderate salinity and high pH. Little is known regarding the ability of tropical plants to remediate petroleum hydrocarbon-contaminated subsurface soil in Hawaiian and other Pacific Island ecosystems although suitable plants have been identified and utilized for bioremediation in surface soil or marine sediments. METHODS: The experiments were conducted in long narrow pots under glasshouse conditions in two phases. A preliminary experiment was done with nine tropical plants: kiawe (Prosopis pallida), milo (Thespesia populnea), common ironwood (Casuarina equisetifolia), kou (Cordia subcordata), tropical coral tree (Erythrina variegata), false sandalwood (Myoporum sandwicense), beach naupaka (Scaevola sericea), oleander (Nerium oleander), and buffelgrass (Cenchrus ciliaris). These plants were screened for resistance to high salinity treatment (2% NaCl) and two diesel fuel levels (5 and 10 g No. 2 diesel fuel/kg soil) in separate treatments. Plants that showed good tolerance of both factors were further evaluated in a second phase for their efficacy in the phytoremediation of diesel-fuel petroleum hydrocarbons under moderate salinity treatment (1% NaCl). RESULTS: Tropical coral tree and buffelgrass were susceptible to either 2% NaCl or diesel fuel at 10 g/kg soil, but tolerant of diesel fuel at 5 g/kg soil. Kiawe, milo, kou, common ironwood, N. oleander, beach naupaka and false sandalwood were tolerant of high salinity (2% NaCl) or high diesel fuel level (10 g/kg soil). These seven plants were also tolerant of the combined adverse effects of a moderate salinity (1% NaCl) and 10 g diesel fuel/kg soil. Three trees, kiawe, milo and kou significantly accelerated the degradation of petroleum hydrocarbons in the soil spiked with 10 g diesel fuel/kg soil under a moderate salinity treatment (1% NaCl). CONCLUSION: Thus the tropical woody plants, kiawe, milo and kou showed potential for use in phytoremediation of petroleum hydrocarbons in coastal tropical soils. RECOMMENDATIONS AND OUTLOOK: Two fast growing trees, milo and kou, appeared promising for further phytoremediation evaluation in experiments that simulate the soil profile at the field site.  相似文献   

15.
Tansel B  Pascual B 《Chemosphere》2011,85(7):1182-1186
In coastal areas, estuaries, and inland waters, dispersant use after oil spills is not allowed due to sensitivity of the ecosystems. The purpose of this study was to investigate the removal of emulsified fuel oils from brackish and pond water by dissolved air flotation (DAF) with and without use of coagulants. Experiments were conducted with a 60 L DAF system. Fuel oil-water emulsions were prepared with regular unleaded gasoline, jet fuel, and diesel fuel mixed at 1:1:1 (v/v/v) ratio. Batch and continuous runs were conducted at air pressurization of 354.6 kPa. During both batch and continuous modes, significant petroleum hydrocarbon (PHC) removal was achieved within 10 min. Coagulant addition initially increased the PHC removal by about 5-15%. However, effectiveness of the coagulant was not significant after 20 min due to breakage of the aggregates. In general, the pond water had higher PHC removal than the brackish water. With longer run times, PHC removal improved slightly and the effluent contained increasing fractions of higher molecular weight compounds indicating that PHC removal was due to both DAF and stripping processes. Results indicate that DAF process can be effective both with and without the use of coagulants for removing PHCs from brackish and pond waters.  相似文献   

16.
Saichek RE  Reddy KR 《Chemosphere》2003,51(4):273-287
Polycyclic aromatic hydrocarbon (PAH)-contaminated soils exist at numerous sites, and these sites may threaten public health and the environment because many PAH compounds are toxic, mutagenic, and/or carcinogenic. PAHs are also hydrophobic and persistent, so conventional remediation methods are often costly or inefficient, especially when the contaminants are present in low permeability and/or organic soils. An innovative technique, electrokinetically enhanced in situ flushing, has the potential to increase soil-solution-contaminant interaction and PAH removal efficiency for low permeability soils; however, the electrolysis reaction at the anode may adversely affect the remediation of low acid buffering capacity soils, such as kaolin. Therefore, the objective of this study was to improve the remediation of low acid buffering soils by controlling the pH at the anode to counteract the electrolysis reaction. Six bench-scale electrokinetic experiments were conducted, where each test employed one of three different flushing solutions, deionized water, a surfactant, or a cosolvent. For each of these solutions, tests were performed with and without a 0.01 M NaOH solution at the anode to control the pH. The test using deionized water with pH control generated a higher electroosmotic flow than the equivalent test performed without pH control, but the electroosmotic flow difference between the surfactant and cosolvent tests with and without pH control was minor compared to that observed with the deionized water tests. Controlling the pH was beneficial for increasing contaminant solubilization and migration from the soil region adjacent to the anode, but the high contaminant concentrations that resulted in the middle or cathode soil regions indicates that subsequent changes in the soil and/or solution chemistry caused contaminant deposition and low overall contaminant removal efficiency.  相似文献   

17.
Surface ozone records from ten polar research stations were investigated for the dependencies of ozone on radiative processes, snow-photochemisty, and synoptic and stratospheric transport. A total of 146 annual data records for the Arctic sites Barrow, Alaska; Summit, Greenland; Alert, Canada; Zeppelinfjellet, Norway; and the Antarctic stations Halley, McMurdo, Neumayer, Sanae, Syowa, and South Pole were analyzed. Mean ozone at the Northern Hemisphere (NH) stations (excluding Summit) is ∼5 ppbv higher than in Antarctica. Statistical analysis yielded best estimates for the projected year 2005 median annual ozone mixing ratios, which for the Arctic stations were 33.5 ppbv at Alert, 28.6 ppbv at Barrow, 46.3 ppbv ppb at Summit and 33.7 ppbv at Zeppelinfjellet. For the Antarctic stations the corresponding ozone mixing ratios were 21.6 ppbv at Halley, 27.0 ppbv at McMurdo, 24.9 ppbv at Neumayer, 27.2 ppbv at Sanae, 29.4 ppbv at South Pole, and 25.8 ppbv at Syowa. At both Summit (3212 m asl) and South Pole (2830 m asl), annual mean ozone is higher than at the lower elevation and coastal stations. A trend analysis revealed that all sites in recent years have experienced low to moderate increases in surface ozone ranging from 0.02 to 0.26 ppbv yr−1, albeit none of these changes were found to be statistically significant trends. A seasonal trend analysis showed above-average increases in ozone during the spring and early summer periods for both Arctic (Alert, Zeppelinfjellet) and Antarctic (McMurdo, Neumayer, South Pole) sites. In contrast, at Barrow, springtime ozone has been declining. All coastal stations experience springtime episodes with rapid depletion of ozone in the boundary layer, attributable to photochemically catalyzed ozone depletion from halogen chemistry. This effect is most obvious at Barrow, followed by Alert. Springtime depletion episodes are less pronounced at Antarctic stations. At South Pole, during the Antarctic spring and summer, photochemical ozone production yields frequent episodes with enhanced surface ozone. Other Antarctic stations show similar, though less frequent spring and summertime periods with enhanced ozone. The Antarctic data provide evidence that austral spring and summertime ozone production in Antarctica is widespread, respectively, affects all stations at least through transport events. This ozone production contributes to a several ppbv enhancement in the annual mean ozone over the Antarctic plateau; however, it is not the determining process in the Antarctic seasonal ozone cycle. Although Summit and South Pole have many similarities in their environmental conditions, this ozone production does not appear to be of equal importance at Summit. Amplitudes of diurnal, summertime ozone cycles at these polar sites are weaker than at lower latitude locations. Amplitudes of seasonal ozone changes are larger in the Southern Hemisphere (by ∼5 ppbv), most likely due to less summertime photochemical ozone loss and more transport of ozone-rich air to the Arctic during the NH spring and summer months.  相似文献   

18.
《Environmental Forensics》2013,14(3-4):331-340
Prince William Sound (PWS), Alaska has an extensive history of human and industrial activity that has produced a complex organic geochemistry record in subtidal sediments of embayments throughout the sound. In addition to contributions from recent oil spills and a regional background of natural petroleum hydrocarbons originating from active hydrocarbon systems in the northern Gulf of Alaska (GOA), pyrogenic and petrogenic PAH were, and continue to be introduced to subtidal sediments at numerous sites of past and present human activities. These sites include villages, fish hatcheries, fish camps and recreational campsites in addition to abandoned settlements, canneries, sawmills, and mines. A holistic approach is used to fingerprint and quantify hydrocarbon contributions from multiple sources in a sediment sample. It involves acquiring a comprehensive understanding of the history of the area to identify potential sources, collection of representative samples, and accurate quantitative analyses of the source and sediment samples for a suite of diagnostic PAH analytes and chemical biomarker compounds. Unlike the deepwater sediments of the sound and GOA, the TOC tool, described elsewhere, does not work as well in some restricted embayments due to their high contents of recent organic matter (ROM). The current study employs a constrained least-squares algorithm to allocate hydrocarbon sources contributing to subtidal sediments collected from PWS embayments in 1991, 1999 and 2000. Results show that sources contributing to the natural petrogenic background are present in the embayments, pyrogenic hydrocarbons including combustion products of diesel are important where human activity was high, and petroleum produced from the Monterey Formation (CA) is present locally. Oil and asphalt shipped from California were widely used for fuel and construction prior to development of the Cook Inlet and North Slope fields. In certain locations that were oiled in 1989, low levels of highly degraded Alaska North Slope crude oil residues attributable to the Exxon Valdez spill remain.  相似文献   

19.
Biomarkers are internationally recognized as useful tools in marine coastal biomonitoring, in particular, as early-warning signals at the level of individual organisms to assess biological effects of pollutants and other stressors. In the present study, Mytilus galloprovincialis has been employed as a sentinel organism to assess biological pollution effects in the Mar Piccolo of Taranto (Southern Italy), a coastal lagoon divided into two small inlets, connected to the open sea through one natural and one artificial narrow openings. Mussels were collected in June 2013 at three sites located within each of the two inlets of the Mar Piccolo. Biological effects were investigated through a suite of biomarkers suitable to reflect effects and/or exposure to contaminants at biochemical and cellular levels. Biochemical biomarkers included glutathione-S-transferase (GST) and acetylcholinesterase (AChE) enzyme activities; as histochemical biomarkers, lysosomal membrane stability, lipofuscin and neutral lipid accumulation, and lysosomal structural changes were considered. As a whole, results highlighted differences among the three study sites, particularly for GST, AChE, and lipofuscins, which are consistent with the variations of the chemical pollutants in sediments. The applied biomarkers showed that a stress syndrome likely to be ascribed to environmental pollutants is occurring in mussels living in the Mar Piccolo of Taranto, in particular, the ones inhabiting the first inlet.  相似文献   

20.
In environmental risk assessments the question has to be answered, whether risk reduction measures are necessary in order to protect the environment. If the combination of natural and anthropogenic sources of a chemical substance leads to an unacceptable risk, the man-made emissions have to be reduced. In this case the proportions of the anthropogenic and natural emissions have to be quantified. Difficulties and possible solutions are discussed in the scope of the OECD- and EU-risk assessments of trichloroacetic acid (TCA) and tetrachloroethylene.In the atmosphere, TCA is formed by photo-oxidative degradation of tetrachloroethylene (PER) and 1,1,1-trichloroethane. The available data on atmospheric chemistry indicate that tetrachloroethylene is the more important pre-cursor. With its high water solubility and low volatility, TCA is adsorbed onto aerosol particles and precipitated during rainfalls. Extended monitoring in rainwater confirmed the global distribution of airborne TCA. TCA reaches soils by dry and wet deposition. In addition formation of TCA from tetrachloroethylene in plants was observed. Consequently, high concentrations were detected in needles, leaves and in forest soil especially in mountain regions.The effect assessment revealed that plants exposed via soil are the most sensitive species compared to other terrestrial organisms. A PNECsoil of 2.4 microg/kg dw was derived from a long-term study with pine and spruce seedlings. When this PNEC is compared with the measured concentrations of TCA in soil, in certain regions a PEC/PNEC ratio >1 is obtained. This clearly indicates a risk to the terrestrial ecosystem, with the consequence that risk reduction measures are deemed necessary.To quantify the causes of the high levels of TCA in certain soils, and to investigate the geographical extent of the problem, intensive and widespread monitoring of soil, air and rainwater for TCA and tetrachloroethylene would be necessary to be able to perform a full mass balance study at an appropriate number of sites. In addition, measurements of the 14C content in TCA isolated from soil could clarify whether a significant proportion of the TCA occurs from natural sources. The possible formation of TCA in soil can also be tested by incubation of isotope enriched inorganic chloride with subsequent mass spectrometry of TCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号