首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degree at which tropical forests are exposed to human pressure is spatially dependent. Population density, proximity to roads, terrain slope, logging activities and land distribution projects are well known factors inducing deforestation and forest degradation in Latin America. Using expert knowledge to weight these threat factors and a Geographical Information System for spatial modeling, a multi-criteria analysis procedure is presented, that allows stratifying a study region in categories of deforestation threat. The procedure was implemented in the Central Volcanic Mountain Range Conservation Area (CVMRCA) in Costa Rica with the purpose of finding areas with a combination of physical and socioeconomic characteristics that is particularly predisposing to a high probability of deforestation. To validate the map, the CVMRCA was stratified in categories of deforestation risk, and the result was superposed to historical deforestation data of the period 1986–1996. The good correlation between risk category and historical deforestation (r = 0.91, p < 0.001) indicates that the map can be used as a decision support tool for defining priority areas for conservation action.  相似文献   

2.
MAPPING TROPICAL DEFORESTATION IN CENTRAL AFRICA   总被引:3,自引:0,他引:3  
The NASA Landsat Pathfinder Humid Tropical Deforestation Project was to map deforestation activities in the humid tropics using datasets from both the Landsat TM (Thematic Mapper) and MSS (Multispectral Scanner System). In Central Africa, its effort had been constrained by the availability of cloud-free satellite coverage, especially for the 1970s Landsat MSS imagery. Here, we reported the deforestation rate and its spatial variability in the region using 18 pairs of co-registered Landsat TM imagery from the 1980s to 1990s. Of the total classified area of 416000 km, there were approximately 217000 km2 of dense forest and 24000 km2 of degraded forest in the 1980s. A total of 1012 km2 of forest, including 542 km2 of dense forest and 470 km2 of degraded forest, were cleared annually with an annual deforestation rate of 0.42%, varying among scenes ranging from 0.03 to 2.72%. Additionally, an average of 0.12% (ranging from 0.01 to 0.77% among scenes) or 257 km2 of dense forest was degraded annually. Regression analyses indicated that extensive deforestation occurred in areas with larger forest cover, including dense and degraded forests. Image interpretation also confirmed the hypothesized relationship between deforestation and forest accessibility. The annual clearance of the dense forest was significantly related to the rural population density, and there was a positive relationship between the dense forest degraded during the 1980s–1990s and the degraded forest area in the 1980s.  相似文献   

3.
Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 × 103 ha (kilohectare, or kha) and 200 × kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125 561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain.  相似文献   

4.
Our world is largely dependent upon the forestry productions. Through the exploitation of forest reserves, we manufacture various industrial products, furniture, and obtain fuel and energy. Forestry productions should be conducted without large-scale deforestation and environmental degradation. In present study we perform a review and forecast analysis on forestry productions worldwide, with the objectives of providing an insight into the trend for several types of forestry productions in the future, and providing referential data for sustainable forestry productions and environmental management. Polynomial functions are used to fit trajectories of forestry productions since 1961 and forecasts during the coming 20 years are given in detail. If the past pattern continues, world fibreboard production would dramatically grow and reach 224,300,000 ± 44,400,000 m3 by the year 2020, an increase up to 240.7 to 408.9% as compared to the present level. Roundwood production of the world would change by −55.5 to 70.4% and reach 3,526,600,000 ± 2,066,800,000 m3 by 2020. In 2020 world production of sawlogs and veneer logs would change by −100 to 164.6% and reach 1,212,900,000 ± 1,242,600,000 m3. Global wood fuel production would change by −68.9 to 1.4% and reach 1,130,900,000 ± 600,800,000 m3 by 2020. Forestry productions in developed countries would largely surpass productions in developing countries in the near future. World forestry production grew since 1961 excluding wood fuel. Roundwood and wood fuel account for the critical proportions in the forestry productions. Wood fuel production has being declined and rapid growing of roundwood production has slowed in recent years. Widespread use of regenerative wood substitutes and worldwide afforestation against deforestation will be among the most effective ways to reduce deforestation and environment degradation associated with forestry productions.  相似文献   

5.
Deforestation and fragmentation are important concerns in managing and conserving tropical forests and have global significance. In the Indian context, in the last one century, the forests have undergone significant changes due to several policies undertaken by government as well as increased population pressure. The present study has brought out spatiotemporal changes in forest cover and variation in forest type in the state of Odisha (Orissa), India, during the last 75 years period. The mapping for the period of 1924–1935, 1975, 1985, 1995 and 2010 indicates that the forest cover accounts for 81,785.6 km2 (52.5 %), 56,661.1 km2 (36.4 %), 51,642.3 km2 (33.2 %), 49,773 km2 (32 %) and 48,669.4 km2 (31.3 %) of the study area, respectively. The study found the net forest cover decline as 40.5 % of the total forest and mean annual rate of deforestation as 0.69 %?year?1 during 1935 to 2010. There is a decline in annual rate of deforestation during 1995 to 2010 which was estimated as 0.15 %. Forest type-wise quantitative loss of forest cover reveals large scale deforestation of dry deciduous forests. The landscape analysis shows that the number of forest patches (per 1,000) are 2.463 in 1935, 10.390 in 1975, 11.899 in 1985, 12.193 in 1995 and 15.102 in 2010, which indicates high anthropogenic pressure on the forests. The mean patch size (km2) of forest decreased from 33.2 in 1935 to 5.5 in 1975 and reached to 3.2 by 2010. The study demonstrated that monitoring of long term forest changes, quantitative loss of forest types and landscape metrics provides critical inputs for management of forest resources.  相似文献   

6.
The Nawarangpur district, Orissa, a tropical region with Sal mixed moist deciduous and Sal mixed dry deciduous forests, has been affected by extensive deforestation. The district was surveyed using Landsat MSS (1973), Landsat TM (1990) and IRS P6 LISS III (2004) satellite imagery. From 1973 to 1990, more than 888.6 km(2) of dense forest (rate of deforestation = 3.62) and from 1990 to 2004, 429.7 km(2) (rate of deforestation = 3.97) were found to have been deforested. The analysis of results identified the reduction in area of dense forest and increase of agricultural land, degraded areas of abandoned agricultural land and unproductive scrub. There is an urgent need for rational management of the remaining forest for it to be able to survive beyond next decades. From this study it can be concluded that temporal changes and the factors affecting these changes should be determined for sustainable management of natural resources.  相似文献   

7.
Forest area figures, at a given point in time and for a given region of interest, differ considerably, affecting the calculation of deforestation rates and thus confuse the political and scientific discussion on the state and change of the resource forest. This article discusses the variation of published forest cover figures, using Costa Rica as an example. A list of published figures on the forest cover of Costa Rica from 1940 onwards is analyzed. Reasons for the differences are hypothesized and discussed. These differences are mainly in the definition of forest and forest classes included, in the type of the studies conducted (mapping and/or sampling), in the precision of the estimates, and in the information sources used. It is concluded that part of the problem is inherent in the nature of the resource `forest'. Quality and completeness of the presentation of the forest cover estimates are a clue to their correct understanding and interpretation. The latter point being especially relevant, as forest cover data have both a technical-scientific and a political meaning and are used as relevant arguments in many discussions. In the example of Costa Rica, a general downward trend is observed up to about 1985/1990, whereas after that forest area figures are on the average at a markedly higher level. Some hypotheses for this change in the trend are discussed.  相似文献   

8.
Deforestation in the biosphere reserves, which are key Protected Areas has negative impacts on biodiversity, climate, carbon fluxes and livelihoods. Comprehensive study of deforestation in biosphere reserves is required to assess the impact of the management effectiveness. This article assesses the changes in forest cover in various zones and protected areas of Nilgiri Biosphere Reserve, the first declared biosphere reserve in India which forms part of Western Ghats-a global biodiversity hotspot. In this study, we have mapped the forests from earliest available topographical maps and multi-temporal satellite data spanning from 1920’s to 2012 period. Mapping of spatial extent of forest cover, vegetation types and land cover was carried out using visual interpretation technique. A grid cell of 1 km?×?1 km was generated for time series change analysis to understand the patterns in spatial distribution of forest cover (1920–1973–1989–1999–2006–2012). The total forest area of biosphere reserve was found to be 5,806.5 km2 (93.8 % of total geographical area) in 1920. Overall loss of forest cover was estimated as 1,423.6 km2 (24.5 % of the total forest) with reference to 1920. Among the six Protected Areas, annual deforestation rate of >0.5 was found in Wayanad wildlife sanctuary during 1920–1973. The deforestation in Nilgiri Biosphere Reserve is mainly attributed to conversion of forests to plantations and agriculture along with submergence due to construction of dams during 1920 to 1989. Grid wise analysis indicates that 851 grids have undergone large-scale negative changes of >75 ha of forest loss during 1920–1973 while, only 15 grids have shown >75 ha loss during 1973–1989. Annual net rate of deforestation for the period of 1920 to 1973 was calculated as 0.5 followed by 0.1 for 1973 to 1989. Our analysis shows that there was large-scale deforestation before the declaration of area as biosphere reserve in 1986; however, the deforestation has drastically reduced after the declaration due to high degree of protection, thus indicating the secure future of reserve in the long term under the current forest management practices. The present work will stand as the most up-to-date assessment on the forest cover of the Nilgiri Biosphere Reserve with immediate applications in monitoring and management of forest biodiversity.  相似文献   

9.
The Lower Congo is one of eleven provinces in the Democratic Republic of Congo, and is located southwest of Kinshasa Town Province. It has an area of approximately 53.947 km2 with a population of 1 504 361 at an estimated 237 persons per km2. The Province comprises five districts, including Lukaya and Cataracts where rural poverty is severe and the population struggle to make a living through agriculture and woodcutting. These activities result in excessive resource exploitation. The high demand for foodstuffs and the high consumption of wood (for energy, construction and export) in Kinshasa, the capital city of the Democratic Republic of Congo and the expanding towns of Matadi and Boma in the Lower Congo Province, are speeding the deforestation rate and unbalancing forest ecosystems. In addition there is the stress resulting from reduced josher (the rest period for agriculture ground), plus climate change and erosion. The phenomena that that we need to address in these two districts include deforestation, reduced josher, excessive agriculture, erosion, burning and climate change which taken together largely explain the current soil degradation. These areas are marked by excessive post deforestation savannah formation and extended areas of sandy soil, distributed throughout grass and shrub savannahs. This desertification, which is rampant in Lukaya and Cataracts, risks imprisoning the rural population in a vicious cycle of poverty if adequate solutions are not found.  相似文献   

10.
Protected areas (PAs) represent real cornerstones in the conservation of biodiversity and natural habitats. Their protection must be a priority today for each society. The enhanced socio-economic requirements increase the pressure upon protected areas, and the effect can result in a reduction of biodiversity. The aim of this study is to quantify forest fragmentation in the pre- (1986–2002) and post-establishment (2002–2016) periods, inside and around (buffer 1, buffer 2 and buffer 3) Apuseni Natural Park (ANP), Romania, using a series of classified Landsat satellite images and six landscape metrics. The results show that forest fragmentation occurred both in the pre- and post-establishment periods, inside and around ANP. Inside the park, the deforestation rate increased four times, from 0.03% year?1 in the pre-establishment period to 0.14% year?1 in the post-establishment period. Around the park, the deforestation rate decreased from 0.31% year?1 in the pre-establishment period (buffer 1) to 0.10% year?1 in the post-establishment period (buffer 1). Forest fragmentation resulted in an increase in the patch density and edge density, and a decrease in the total core area and mean patch size leading to isolation of patches and fragmentation of landscape, especially in ANP in the post-establishment period. Several measures can be taken in order to stop forest fragmentation inside and around ANP, including the education of buffer-zone communities, reforestation, enforcement of park regulations, and forest legislation.  相似文献   

11.
This paper describes four global-change phenomena that are having major impacts on Amazonian forests. The first is accelerating deforestation and logging. Despite recent government initiatives to slow forest loss, deforestation rates in Brazilian Amazonia have increased from 1.1 million ha yr–1 in the early 1990s, to nearly 1.5 million ha yr–1 from 1992–1994, and to more than 1.9 million ha yr–1 from 1995–1998. Deforestation is also occurring rapidly in some other parts of the Amazon Basin, such as in Bolivia and Ecuador, while industrialized logging is increasing dramatically in the Guianas and central Amazonia.The second phenomenon is that patterns of forest loss and fragmentation are rapidly changing. In recent decades, large-scale deforestation has mainly occurred in the southern and eastern portions of the Amazon — in the Brazilian states of Pará, Maranho, Rondônia, Acre, and Mato Grosso, and in northern Bolivia. While rates of forest loss remain very high in these areas, the development of major new highways is providing direct conduits into the heart of the Amazon. If future trends follow past patterns, land-hungry settlers and loggers may largely bisect the forests of the Amazon Basin.The third phenomenon is that climatic variability is interacting with human land uses, creating additional impacts on forest ecosystems. The 1997/98 El Niño drought, for example, led to a major increase in forest burning, with wildfires raging out of control in the northern Amazonian state of Roraima and other locations. Logging operations, which create labyrinths of roads and tracks in forsts, are increasing fuel loads, desiccation and ignition sources in forest interiors. Forest fragmentation also increases fire susceptibility by creating dry, fire-prone forest edges.Finally, recent evidence suggests that intact Amazonian forests are a globally significant carbon sink, quite possibly caused by higher forest growth rates in response to increasing atmospheric CO2 fertilization. Evidence for a carbon sink comes from long-term forest mensuration plots, from whole-forest studies of carbon flux and from investigations of atmospheric CO2 and oxygen isotopes. Unfortunately, intact Amazonian forests are rapidly diminishing. Hence, not only is the destruction of these forests a major source of greenhouse gases, but it is reducing their intrinsic capacity to help buffer the rapid anthropogenic rise in CO2.  相似文献   

12.
In 1996, the Smithsonian Tropical Research Institute and the Republic of Panama's Environmental Authority, with support fromthe United States Agency for International Development, undertook a comprehensive program to monitor the ecosystem of the Panama Canal watershed. The goals were to establish baselineindicators for the integrity of forest communities and rivers. Based on satellite image classification and ground surveys, the2790 km2 watershed had 1570 km2 of forest in 1997, 1080 km2 of which was in national parks and nature monuments. Most of the 490 km2 of forest not currently in protected areas lies along the west bank of the Canal, and its managementstatus after the year 2000 turnover of the Canal from the U.S. to Panama remains uncertain. In forest plots designed to monitorforest diversity and change, a total of 963 woody plant specieswere identified and mapped. We estimate there are a total of 850–1000 woody species in forests of the Canal corridor. Forestsof the wetter upper reaches of the watershed are distinct in species composition from the Canal corridor, and have considerably higher diversity and many unknown species. Theseremote areas are extensively forested, poorly explored, and harbor an estimated 1400–2200 woody species. Vertebrate monitoring programs were also initiated, focusing on species threatened by hunting and forest fragmentation. Large mammals are heavily hunted in most forests of Canal corridor, and therewas clear evidence that mammal density is greatly reduced in hunted areas and that this affects seed predation and dispersal. The human population of the watershed was 113 000 in 1990, and grew by nearly 4% per year from 1980 to 1990. Much of this growth was in a small region of the watershed on the outskirts of Panama City, but even rural areas, including villages near and within national parks, grew by 2% per year. There is no sewage treatment in the watershed, and many towns have no trashcollection, thus streams near large towns are heavily polluted. Analyses of sediment loads in rivers throughout the watershed did not indicate that erosion has been increasing as a result ofdeforestation, rather, erosion seems to be driven largely by total rainfall and heavy rainfall events that cause landslides.Still, models suggest that large-scale deforestation would increase landslide frequency, and failure to detect increases inerosion could be due to the gradual deforestation rate and the short time period over which data are available. A study of runoff showed deforestation increased the amount of water fromrainfall that passed directly into streams. As a result, dry season flow was reduced in a deforested catchment relative to aforested one. Currently, the Panama Canal watershed has extensive forest areasand streams relatively unaffected by humans. But impacts of hunting and pollution near towns are clear, and the burgeoningpopulation will exacerbate these impacts in the next few decades.Changes in policies regarding forest protection and pollution control are necessary.  相似文献   

13.
The crown densities of 186 trees of five common European tree species (Norway spruce (Picea abies), silver fir (Abies alba), Scots pine (Pinus sylvestris), oak (Quercus robur) and beech (Fagus sylvatica) were assessed simultaneously by observation teams from France, Germany and the United Kingdom. Major differences in the scores existed, with the maximum difference on any one tree being 45%. Differences tended to be consistent, with the French team scoring more lightly than the German team and the German team more lightly than the UK team. The differences throw into question the value of international comparisons of forest condition, particularly the use of comparative tables of the extent of forest decline in individual European countries.  相似文献   

14.
Pingbian Miao Autonomous County is one of the poorest rural areas in China. Land-use changes, mainly driven by agricultural expansion and deforestation, may significantly impact ecosystem services and functions, but such effects are difficult to quantify. In the present study, Landsat image data were combined with the published coefficients about the world and China ecosystem to quantify land-use and ecosystem service changes in the mountainous area. A sensitivity analysis was employed to determine the effect of manipulating these coefficients on the estimated values. Our results show that during the past decades (from 1973 to 2004) forests and grasslands were converted into shrubland and cropland, respectively, resulting in a continuous decrease in ecosystem service (from 124.5 US$ × 106 in 1973 to 100.4 US$ × 106 in 2004). We found that the decrease of mixed forest in the study area was the largest contributor (i.e., 25.4 US$ × 106) to the decline of the ecosystem service. Therefore we propose that future land-use policy should pay more attention to the crucial ecosystem functions of these forests (including tropical forest), and that it is necessary to balance the relationship between the livelihood of local farmers and environmental protection in order to maintain a healthy and stable ecosystem.  相似文献   

15.
Surface water quality is vulnerable to pollution due to human activities. The upper reach of the Hun River is an important water source that supplies 52 % of the storage capacity of the Dahuofang Reservoir, the largest reservoir for drinking water in Northeast China, which is suffering from various human-induced changes in land use, including deforestation, reclamation/farming, urbanization and mine exploitation. To investigate the impacts of land use types on surface water quality across an anthropogenic disturbance gradient at a local scale, 11 physicochemical parameters (pH, dissolved oxygen [DO], turbidity, oxygen redox potential, conductivity, biochemical oxygen demand [BOD5], chemical oxygen demand [COD], total nitrogen [TN], total phosphorus [TP], NO 3 ? -N, and NH 4 + -N) of water from 12 sampling sites along the upper reach of the Hun River were monitored monthly during 2009–2010. The sampling sites were classified into four groups (natural, near-natural, more disturbed, and seriously disturbed). The water quality exhibited distinct spatial and temporal characteristics; conductivity, TN, and NO 3 ? -N were identified as key parameters indicating the water quality variance. The forest and farmland cover types played significant roles in determining the surface water quality during the low-flow, high-flow, and mean-flow periods based on the results of a stepwise linear regression. These results may provide incentive for the local government to consider sustainable land use practices for water conservation.  相似文献   

16.
Spatially explicit approach is essential to prioritise the ecosystems for biodiversity conservation. In the present study, the conservation status of 20 protected areas of the Western Ghats of Kerala, India, was analysed based on long-term changes in forests (1975–1985–1995–2005–2013), landscape level changes in fragmentation and forest fires (2005–2015). This study has shown that a significant forest loss occurred in protected areas before declaration. Idukki is one of the major protected areas which showed a drastic reduction (18.83%) in its forest cover. During 1985–1995, Periyar tiger reserve had lost 24.19 km2 core 3 forest area followed by Peppara (18.54 km2), Parambikulam (17.93 km2), Chimmony (17.71 km2), Peechi-Vazhani (12.31 km2) and Neyyar (11.67 km2). An area of 71.33 km2 of the protected area was affected by fires in 2014. Overall protected area-wise decadal analysis indicates Periyar has the highest number of fire incidences followed by Wayanad, Kurinjimala, Silent Valley and Eravikulam. Disturbances in the form of fires and fragmentation still exist and may have significant conservation threat to flora and fauna. Among protected areas, many are having a probability to go under threat or dynamic stage. Chinnar, Thattekkad and Kurinjimala sanctuaries are representing high levels of vulnerability, or they are near to decline stage. Habitat level monitoring of the anthropogenic disturbances can be efficiently useful for the strategic conservation planning. The present study has provided geospatial database on spatial patterns of deforestation, fragmentation and forest fires in protected areas of Kerala. Conservation prioritization approach based on these parameters will be useful for the strategic planning in the state of Kerala.  相似文献   

17.
Relationships between forest communities and landtypes (the most detailed level of a hierarchical land classification system) were determined for the Prentice Cooper State Forest (PCSF), located on the southern tip of Walden Ridge, west of Chattanooga, Tennessee.Four extensive landtypes within the Mullins Cove area of PCSF were sampled: 1) broad sandstone ridges-south aspect (LT-3), 2) north sandstone slopes (LT-5), 3) south sandstone slopes (LT-6), and 4) plateau escarpment and upper sandstone slopes and benches-south aspect (LT-17). Rectangular, 0.04-hectare plots specified sub-plots for sampling overstory, midstory, sapling/shrub, seedling/herb forest strata, and physical site characteristics. Plots (139) were allocated by landtype using a random start with subsequent systematic location.Multivariate statistical techniques were used to 1) examine the distinctness of forest communities occurring among landtypes (discriminant analysis), 2) describe the forest communities occurring within landtypes (cluster analysis), and 3) determine factors controlling the spatial distribution of forest communities on the landscape (factor analysis).Different relative importance values of species among communities along with different community combinations among landtypes resulted in distinct forest vegetation among landtypes.Chestnut oak (Quercus prinus L.), white oak (Quercus alba L.), and shortleaf pine (Pinus echinata Miller) communities occurred on all four landtypes. Scarlet oak (Quercus coccinia Muenchh.) communities occurred on LT-5, LT-6, and LT-17. Black oak (Quercus velutina Lam.) communities occurred on LT-3 and LT-5. Yellow-poplar (Liriodendron tulipifera L.), northern red oak (Quercus rubra L.), and eastern hemlock (Tsuga canadensis (L.) Carr.), communities occurred only on LT-17.Landscape scale factors that varied along an elevation gradient were dominant in controlling spatial distribution of forest communities. Microsite factors were secondary controllers. Specific ecological factors could not be determined by factor analysis.Relatively distinct vegetation occurs among sampled landtypes on the PCSF. This study provides additional evidence that the land classification system divides the Mid-Cumberland Plateau landscape into distinct ecological units.  相似文献   

18.
This paper examines the vulnerability of the Congo Basin's forests through a GIS platform, taking into consideration the variables of population growth, road density, logging concession, and forest fragmentation. The assessment indicates that the forests will continue to shrink towards the interior over the next 50 years. Current contiguous forests will fragment into three large blocks, including one on the west side of the Congo River and two in the Democratic Republic of Congo, while a large number of small forest patches will retain in the periphery of the large blocks. The study shows that integrated GIS assessment of the driving forces of tropical deforestation can shed light on the future forest distribution and provide a tool to address the broader implications of social and economic development for tropical deforestation.  相似文献   

19.
Mycorrhiza is the main spatial and temporal linkage between different constituents in a forest ecosystem. The functional compatibility and stress tolerance of ectomycorrhizal types is species specific, and therefore the information on the ectomycorrhizal community structure can add to the understanding of processes in forest ecosystems and can also be applied as tools for bioindication of pollution stress in forest soils. We have studied the effects of pollution (N and S) on trees and forest soils by: (1) quantification of ECM types diversity as in situ indicators in forest stands, (2) determination and quantification of pollution-sensitive or -insensitive ECM types as passive monitors, (3) root growth and development of ECM on nonmycorrhizal spruce seedlings, planted at the studied sites (active monitors), and (4) ECM infection (a bioassay based on mycorrhizal inoculum potential) of seedlings in an experimental set-up as ex situ testers. ECM species richness for Norway spruce trees (Picea abies) showed higher values in unpolluted sites than in polluted ones, while the differences were not significant for European beech trees (Fagus sylvatica). As pollution-sensitive or -insensitive ECM species in spruce forests, we suggest Hydnum rufescens (sensitive) and Paxillus involutus (unsensitive). Mycorrhizal potential in Norway spruce seedlings as a bioassay for soil N and S pollution was effective, and is suggested as an additional, standardized and widely comparable system in bioindication of soil pollution.  相似文献   

20.
The production of timber from native forests is presently one of the most controversial land management issues in Australia. Part of this controversy results from the potential impacts of forestry practices on forest-dependent fauna, particularly those that are rare and endangered, such as Leadbeater's Possum Gymnobelideus leadbeateri McCoy, in the forests of central Victoria, south-eastern Australia. A significant proportion of the highly limited distribution of this species overlaps with some of the most valuable wood production forests in Australia within which extensive clearfelling operations are employed to produce timber and pulpwood. These operations can destroy the habitat of G. leadbeateri. The Victoria government agency that is responsible for forest and wildlife management has devised a forest zoning system as part of the management strategies to conserve G. leadbeateri within timber production areas. This is designed to partition the forest into three types of areas: (1) where the conservation of G. leadbeateri is a priority, (2) where wood production is a priority, and, (3) where both land uses are a joint priority. The classification of areas of forest where the conservation of G. leadbeateri is the primary land use is based on an understanding of the habitat requirements of the species. The results of recent field studies, where statistical models of the habitat requirements of G. leadbeateri have been developed and their performance subsequently tested using a new dataset, highlights the need for a new basis to guide the classification of areas for the conservation of the species within wood production forests. We describe a method for devising a forest management zoning system that is based on a statistical model of the habitat requirements of G. leadbeateri and which will better integrate wood production and the conservation of the species. This procedure accounts for the uncertainty in the statistical model and, in turn, reduces the risk that areas where G. leadbeateri occurs are logged, whilst ensuring that other areas are not unnecessarily excluded from timber harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号