首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The only remaining wild population of the endangered Whooping Crane ( Grus americana ) winters in salt marsh habitats of the Texas (U.S.) coast. Whooping Cranes are known to respond and utilize nearby upland habitats after a tire treatment has been applied. We investigated several factors that may attract Whooping Cranes to recently burned sites at Aransas National Wildlife Refuge between 1982 and 1994 and whether cranes utilize upland habitats primarily in response to a recent fire treatment or whether they occur regularly on uplands regardless of burning. We evaluated the effect of different years, burn site location, date of burn, and acorn production on crane use of specific burn sites. Crane use was determined with ground surveys from 1982 through 1985 and from weekly aerial surveys between 1986 and 1994. Whooping Cranes used fire-treated upland habitats to a significantly greater extent than unburned sites. The response of cranes to recently burned sites was greatest immediately after fire treatment and declined with time. No significant difference was found in crane use of burned sites among different years. Similarly, time of burn and acorn production had no significant effect on crane use of fire-treated habitats. Crane use among specific burn units differed significantly. We suggest that Whooping Cranes may be using fire-treated upland habitats to feed on recently killed vertebrates and invertebrates plus recently exposed plant items. Because cranes primarily inhabit salt marsh habitats, the availability of alternate food sources may be of considerable importance, particularly during years when marsh foods are scarce. But because it appears that areas must be burned to facilitate use by Whooping Cranes, we suggest that the extent of prescribed burning be based on reduced availability of marsh food resources and not on acorn production estimates alone.  相似文献   

3.
4.
5.
Predicting a species’ distribution can be helpful for evaluating management actions such as critical habitat designations under the U.S. Endangered Species Act or habitat acquisition and rehabilitation. Whooping Cranes (Grus americana) are one of the rarest birds in the world, and conservation and management of habitat is required to ensure their survival. We developed a species distribution model (SDM) that could be used to inform habitat management actions for Whooping Cranes within the state of Nebraska (U.S.A.). We collated 407 opportunistic Whooping Crane group records reported from 1988 to 2012. Most records of Whooping Cranes were contributed by the public; therefore, developing an SDM that accounted for sampling bias was essential because observations at some migration stopover locations may be under represented. An auxiliary data set, required to explore the influence of sampling bias, was derived with expert elicitation. Using our SDM, we compared an intensively managed area in the Central Platte River Valley with the Niobrara National Scenic River in northern Nebraska. Our results suggest, during the peak of migration, Whooping Crane abundance was 262.2 (90% CI 40.2?3144.2) times higher per unit area in the Central Platte River Valley relative to the Niobrara National Scenic River. Although we compared only 2 areas, our model could be used to evaluate any region within the state of Nebraska. Furthermore, our expert‐informed modeling approach could be applied to opportunistic presence‐only data when sampling bias is a concern and expert knowledge is available.  相似文献   

6.
Hybridization between endangered species and more common species is a significant problem in conservation biology because it may result in extinction or loss of adaptation. The historical reduction in abundance and geographic distribution of the American plains bison (Bison bison bison) and their recovery over the last 125 years is well documented. However, introgression from domestic cattle (Bos taurus) into the few remaining bison populations that existed in the late 1800s has now been identified in many modern bison herds. We examined the phenotypic effect of this ancestry by comparing weight and height of bison with cattle or bison mitochondrial DNA (mtDNA) from Santa Catalina Island, California (U.S.A.), a nutritionally stressful environment for bison, and of a group of age‐matched feedlot bison males in Montana, a nutritionally rich environment. The environmental and nutritional differences between these 2 bison populations were very different and demonstrated the phenotypic effect of domestic cattle mtDNA in bison over a broad range of conditions. For example, the average weight of feedlot males that were 2 years of age was 2.54 times greater than that of males from Santa Catalina Island. In both environments, bison with cattle mtDNA had lower weight compared with bison with bison mtDNA, and on Santa Catalina Island, the height of bison with cattle mtDNA was lower than the height of bison with bison mtDNA. These data support the hypothesis that body size is smaller and height is lower in bison with domestic cattle mtDNA and that genomic integrity is important for the conservation of the American plains bison. Efectos Fenotípicos del ADN Mitocondrial de Ganado en el Bisonte Americano  相似文献   

7.
Cell cultures have been established from 33 individual black rhinoceroses. These were from wild populations from various localities in southern Africa and include representatives from three geographical regions (southwestern, south-central, and eastern) corresponding to currently accepted conservation units, and include individuals previously attributed to one of the four subspecies, Diceros b. minor, D. b. bicornis, D. b. michaeli , and D. b. chobiensis (du Toit et al. 1987). Comparative mitochondrial DNA restriction maps were constructed using 16 restriction enzymes. These showed in each case two site differences between representative individuals from any two of the above geographical regions. Maps were monomorphic within geographical regions and, therefore, have the potential to provide diagnostic markers. The map from a single individual attributed to the D. b. chobiensis subspecies was identical to other individuals (attributed to D. b. minor ) in the south-central geographical region. The low amount of genetic diversity implied by these few differences renders it unlikely that problems with outbreeding depression will arise if, given the continuing decline in numbers of black rhinoceroses, it becomes necessary to supplement wild or captive populations with individuals from a different conservation unit in order to avoid inbreeding depression.  相似文献   

8.
9.
The gray wolf is a large, highly mobile predator whose original geographic range included most of the Northern Hemisphere. High rates of genetic exchange probably characterized even distantly-separated populations in the past, but recent population declines and habitat fragmentation have isolated previously contiguous populations, especially in the Old World. We examine mitochondrial DNA (mtDNA) variability among twenty-six populations of wolves from throughout their geographic range. We find eighteen mtDNA genotypes in gray wolves, seven of these are derived from hybridization with coyotes, four are confined to the New World, six are confined to the Old World and one is shared by both areas. Genetic differentiation among wolf populations is significant but small in magnitude. In the Old World, most localities have a single unique genotype, whereas in the New World several genotypes occur at most localities and three of the five genotypes are nearly ubiquitous. The pattern of genetic differentiation in the gray wolf contrasts with that of another large, highly vagile canid, the coyote, in which genetic differentiation among populations is not significant even among widely separated localities. We suggest that the difference between these two species reflects the rapid, recent increase in coyote numbers and expansion of their geographic range, and the coincident decline in gray wolf populations. Apparent genetic differences among extant wolf populations may be a recent phenomenon reflecting population declines and habitat fragmentation rather than a long history of genetic isolation.  相似文献   

10.
I describe three theoretical approaches to endangered species conservation: public-sector models, private-sector models, and mixed models. Criteria to consider in evaluating these models are scientific, economic, legal, ethical, and administrative. The history of conservation efforts on behalf of the endangered Whooping Crane ( Grus americana ) is used as an example of a mixed-model approach (one that involves both public- and private-sector organizations and individuals) to the conservation of endangered species. Evaluation of Whooping Crane conservation efforts, using the specified criteria, suggests that this mixed model gets relatively high marks in all areas. My recommendations for endangered species conservation activities include (1) ensuring that all potential sources of scientific expertise and "caring" are included, (2) developing a robust national funding mechanism for endangered species conservation efforts, and (3) creating streamlined administrative structures and operating procedures tailored to the unique needs of each endangered species conservation team. Broader implications of the Whooping Crane story for conservation biology as a profession and for conservation biologists as individuals include (1) being inclusive rather than exclusive in conservation planning and implementation, (2) recognizing the power of individual initiative and commitment, (3) collecting basic data over an extended period of time, and (4) emphasizing the importance of communication, cooperation, and coordination.  相似文献   

11.
12.
Abstract: The Italian wolf ( Canis lupus ) population has declined continuously over the last few centuries and become isolated as a result of the extermination of other populations in central Europe and the Alps during the nineteenth century. In the 1970s, approximately 100 wolves survived in 10 isolated areas in the central and southern Italian Apennines. Loss of genetic variability, as suggested by preliminary studies of mitochondrial DNA (mtDNA) sequences, hybridization with feral dogs, and the illegal release of captive, non-native wolves are considered potential threats to the viability of the Italian wolf population. We sequenced 546 base pairs of the mtDNA control region in a comprehensive set of Italian wolves and compared them to those of dogs and other wolf populations from Europe and the Near East. Our data confirm the absence of mtDNA variability in Italian wolves: all 101 individuals sampled across their distribution in Italy had the same, unique haplotype, whereas seven haplotypes were found in only 26 wolves from an outbred population in Bulgaria. Most haplotypes were specific either to wolves or dogs, but some east European wolves shared haplotypes with dogs, indicative of hybridization. In contrast, neither hybridization with dogs nor introgression of non-native wolves was detected in the Italian population. These findings exclude the introgression of dog genes via matings between male wolves and female dogs, the most likely direction of hybridization. The observed mtDNA monomorphism is the possible outcome of random drift in the declining and isolated Italian wolf population, which probably existed at low effective population size during the last 100–150 years. Low effective population size and the continued loss of genetic variability might be a major threat to the long-term viability of Italian wolves. A controlled demographic increase, leading to recolonization of the historical wolf range in Italy, should be enforced.  相似文献   

13.
14.
15.
Effects of Introduced Salmonids on a Montane Population of Iberian Frogs   总被引:3,自引:0,他引:3  
Abstract:  Amphibians are declining worldwide because of multiple factors, including human-mediated introduction of fishes into naturally fishless areas. Although several studies have focused on the effect of exotic fishes on native amphibians breeding in ponds or lakes, little is known about their effects on stream-breeding species. We studied the effects of introductions of native brown trout ( Salmo trutta ) and exotic brook trout ( Salvelinus fontinalis ) on the stream-breeding, endemic Iberian frog (  Rana iberica ) in a protected area in central Spain. We assessed occurrence patterns of tadpoles and salmonids and compared habitat use of the three species. We also determined experimentally whether chemical cues from salmonids elicited antipredator behavior in tadpoles. Finally, we assessed the relative influence of tadpole habitat preferences, differences in salmonid species, and invasion geography on tadpole occurrence. Despite widely overlapping habitat preferences, tadpoles and trout did not coexist, with the former restricted to fishless habitats. Tadpoles detected chemical cues from both trout species and reacted by decreasing their activity, although the response toward the native brown trout was stronger. The residual distribution of Iberian frogs in Peñalara is better explained by the geography of fish invasions than by the fish species involved. Measures such as fish extirpation from certain areas, aimed at recovering lost habitat and improving connectivity among remaining populations of Iberian frogs, seem critical for the species' long-term survival in central Spain.  相似文献   

16.
Abstract:  Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel ( Falco punctatus ) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N eI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N eV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.  相似文献   

17.
Utility of Mitochondrial DNA Barcodes in Species Conservation   总被引:9,自引:0,他引:9  
Abstract:  Molecular tools are a standard part of many conservation studies and can be informative at many different levels of analysis, although there are inherent limitations and strengths of different genes or parts of genes to inform specific questions. Animal DNA barcodes, 600- to 800-base-pair segments of the mitochondrial gene cytochrome oxidase I, have been proposed as a means to quantify global biodiversity. Although mitochondrial (mt) DNA has a long history of use at the species level, recent analyses suggest that the use of a single gene, particularly mitochondrial, is unlikely to yield data that are balanced, universally acceptable, or sufficient in taxonomic scope to recognize many species lineages. Mitochondrial and nuclear genomes have different patterns of evolution and modes of inheritance, which can result in very different assessments of biodiversity. The ramifications of choosing a particular definition of species (species concept) need to be carefully considered because current efforts have designated DNA barcodes as the universal species concept without demonstrating its superiority over preexisting concepts. The results of such a barcoding paradigm may include a failure to recognize significant portions of biodiversity or nuclear/mitochondrial mixed lineages and could spuriously focus conservation resources on populations with relatively minor mtDNA divergence. DNA barcodes are most likely to provide potentially useful information for groups that are already well studied, and such taxa do not constitute the majority of biodiversity or those in most need of research attention. DNA barcode-length sequences are an important source of data but, when used alone or out of context, may offer only a fraction of the information needed to characterize species while taking resources from broader studies that could produce information essential to robust and informed conservation decisions.  相似文献   

18.
The largest known breeding migration of the flatwoods salamander ( Ambystoma cingulatum ) was monitored over a 22-year period following its discovery in 1970 in Liberty County, Florida (U.S.A.). Nightly migrations of 200–300 adults across a 4.3-km stretch of paved highway in 1970–1972 had dwindled to less than one individual per night in 1990–1992; the decline apparently was already underway in the 1980s. We discuss possible natural and anthropogenic causes of the decline. The silvicultural practice of converting native longleaf pine savanna to bedded slash pine plantation, implemented on our study site about 1968, may have interfered with migration, successful hatching, larval life, feeding, and finding suitable cover post-metamorphosis. Longleaf pine-wiregrass flatwoods inhabited by adults have been drastically reduced and severely degraded throughout the coastal plain and may explain why the species is rare and deserving of threatened status.  相似文献   

19.
Effects of Road Fencing on Population Persistence   总被引:6,自引:0,他引:6  
Abstract:  Roads affect animal populations in three adverse ways. They act as barriers to movement, enhance mortality due to collisions with vehicles, and reduce the amount and quality of habitat. Putting fences along roads removes the problem of road mortality but increases the barrier effect. We studied this trade-off through a stochastic, spatially explicit, individual-based model of population dynamics. We investigated the conditions under which fences reduce the impact of roads on population persistence. Our results showed that a fence may or may not reduce the effect of the road on population persistence, depending on the degree of road avoidance by the animal and the probability that an animal that enters the road is killed by a vehicle. Our model predicted a lower value of traffic mortality below which a fence was always harmful and an upper value of traffic mortality above which a fence was always beneficial. Between these two values the suitability of fences depended on the degree of road avoidance. Fences were more likely to be beneficial the lower the degree of road avoidance and the higher the probability of an animal being killed on the road. We recommend the use of fences when traffic is so high that animals almost never succeed in their attempts to cross the road or the population of the species of concern is declining and high traffic mortality is known to contribute to the decline. We discourage the use of fences when population size is stable or increasing or if the animals need access to resources on both sides of the road, unless fences are used in combination with wildlife crossing structures. In many cases, the use of fences may be beneficial as an interim measure until more permanent measures are implemented.  相似文献   

20.
Although the genetic and ecological effects of population declines in endangered species have been well studied, little is known of the social consequences. Changes in signaling behavior may result in disrupted communication and affect both reproductive and conflict‐resolution activities. The North Island Kōkako (Callaeas wilsoni) is an endangered, duetting (i.e., alternating, coordinated singing by mated pairs) songbird endemic to New Zealand temperate rain forests. Scattered populations (approximately 1500 individuals in 13 surviving and 11 translocated populations) in isolated conservation areas of different sizes have been rescued from extirpation and are currently recovering. We examined key song attributes of the Kōkako to assess whether population size or growth rate are related to song complexity, the reduction of which may compromise effective communication. We analyzed song repertoire size and phrase‐type sharing (i.e., Jaccard index of similarity), vocal performance (singing rates, song switching rates, and diversity of phrase types), and song syntactical characteristics (i.e., unpredictability in sequences of phrase types) in surviving and translocated populations (populations of approximately 19–250 territorial individuals). Population size was positively correlated with a population's song repertoire, song diversity, and switching of song phrase types and negatively correlated with shared phrase types and variation in syntactical structure of songs. Population growth rate correlated positively with pair repertoire size, population repertoire size, and singing rates during song bouts. As for solo‐singing species in fragmented landscapes, songs in the fragmented populations of Kōkako appear to be undergoing microevolution as occurs in island colonization events. Our results suggest that vocal changes in small populations could affect population establishment and growth, particularly in multiple‐source translocations. We believe measurement of vocal behavior could be used as a supplement to periodic population censuses to allow more frequent monitoring of population size. Efectos de la Conducta de Canto sobre el Tamaño Poblacional de una Ave Canora Rara  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号